Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = crystallinity of perovskite film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2994 KiB  
Article
The Effect of Cs-Controlled Triple-Cation Perovskite on Improving the Sensing Performance of Deep-Ultraviolet Photodetectors
by Jun Seo Kim, Sangmo Kim and Hyung Wook Choi
Appl. Sci. 2025, 15(14), 7982; https://doi.org/10.3390/app15147982 - 17 Jul 2025
Viewed by 299
Abstract
In this study, a UVC photodetector (PD) was fabricated by incorporating CsI into a conventional double-cation perovskite (FAMAPbI3) to enhance its stability. The device utilized a methylammonium iodide post-treatment solution to fabricate CsFAMAPbI3 perovskite thin films, which functioned as the [...] Read more.
In this study, a UVC photodetector (PD) was fabricated by incorporating CsI into a conventional double-cation perovskite (FAMAPbI3) to enhance its stability. The device utilized a methylammonium iodide post-treatment solution to fabricate CsFAMAPbI3 perovskite thin films, which functioned as the primary light-absorbing layer in an NIP structure composed of n-type SnO2 and p-type spiro-OMeTAD. Perovskite films were fabricated and analyzed as a function of the Cs concentration to optimize the Cs content. The results demonstrated that Cs doping improved the crystallinity and phase stability of the films, leading to their enhanced electron mobility and photodetection performance. The UVC PD with an optimum Cs concentration exhibited a responsivity of 58.2 mA/W and a detectivity of 3.52 × 1014 Jones, representing an approximately 7% improvement over conventional structures. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

11 pages, 3115 KiB  
Article
Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments
by Qi-Zhen Chen, Zhi-Xuan Zhang, Wan-Qiang Fu, Jing-Ru Duan, Yu-Xin Yang, Chao-Nan Chen and Shui-Yang Lien
Nanomaterials 2025, 15(13), 986; https://doi.org/10.3390/nano15130986 - 25 Jun 2025
Viewed by 424
Abstract
The tin dioxide (SnO2) thin films in this work were prepared by using plasma-enhanced atomic layer deposition (PEALD), and a systematic analysis was conducted to evaluate the influence of post-deposition annealing at various temperatures in a nitrogen–hydrogen mixed atmosphere on their [...] Read more.
The tin dioxide (SnO2) thin films in this work were prepared by using plasma-enhanced atomic layer deposition (PEALD), and a systematic analysis was conducted to evaluate the influence of post-deposition annealing at various temperatures in a nitrogen–hydrogen mixed atmosphere on their surface morphology, optical behavior, and electrical performance. The SnO2 films were characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Hall effect measurements. With increasing annealing temperatures, the SnO2 films exhibited enhanced crystallinity, a higher oxygen vacancy (OV) peak area ratio, and improved mobility and carrier concentration. These enhancements make the annealed SnO2 films highly suitable as electron transport layers (ETLs) in perovskite solar cells (PSCs), providing practical guidance for the design of high-performance PSCs. Full article
(This article belongs to the Special Issue Thin Films for Efficient Perovskite Solar Cells)
Show Figures

Graphical abstract

18 pages, 6277 KiB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Viewed by 378
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

14 pages, 2277 KiB  
Article
Investigation of Annealing Temperature Effect of Tin Oxide on the Efficiency of Planar Structure Perovskite Solar Cells
by Ahmed Hayali and Maan M. Alkaisi
Nanomaterials 2025, 15(11), 807; https://doi.org/10.3390/nano15110807 - 28 May 2025
Viewed by 586
Abstract
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible [...] Read more.
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible and low-cost materials suitable for photovoltaic applications. The ETL is necessary for the extraction of electrons and charge separation from the perovskite active layer. Herein, we present a study of the effect of annealing temperature on SnO2 used as an ETL. The annealing temperature of the SnO2 has a considerable effect on the morphology, crystallinity, grain size, and surface topography of the SnO2 layer. The surface properties of the ETL influence the structural properties of the perovskite films. In this study, the annealing temperature of the SnO2, deposited using spin coating, was changed from 90 °C to 150 °C. The SnO2 films annealed at 120 °C resulted in reduced surface defects, improved electron extraction, and produced a significant increase in the grain size of the perovskite active layers. The increase in grain size led to improved efficiency of the PSCs. Devices annealed at 120 °C yielded PSCs with an average efficiency of 15% for a 0.36 cm2 active area, while devices treated at 90 °C and 150 °C produced an average efficiency of 12%. The PSCs fabricated at low temperatures provide an effective technique for low-cost manufacturing, especially on flexible and polymer-based substrates. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Graphical abstract

15 pages, 4135 KiB  
Article
High-Performance Perovskite Solar Cells Enabled by Reduced MACl Additives in NMP-Based Solvents
by Junhyuk Gong, Simon MoonGeun Jung and Gyu Min Kim
Energies 2025, 18(10), 2542; https://doi.org/10.3390/en18102542 - 14 May 2025
Viewed by 738
Abstract
Methylammonium chloride (MACl) in perovskite solar cells (PSCs) is a key additive known to enhance film quality in dimethyl sulfoxide (DMSO)-based systems, where an optimal concentration of 50 mol% is typically required. However, alternative solvent systems, such as N-methyl-2-pyrrolidone (NMP), have shown potential [...] Read more.
Methylammonium chloride (MACl) in perovskite solar cells (PSCs) is a key additive known to enhance film quality in dimethyl sulfoxide (DMSO)-based systems, where an optimal concentration of 50 mol% is typically required. However, alternative solvent systems, such as N-methyl-2-pyrrolidone (NMP), have shown potential to reduce additive concentrations while maintaining high performance. This study explored the NMP/DMF (1:9) solvent system and its impact on MACl optimization. The optimal concentration of MACl in NMP-based systems was reduced to 20–30 mol%, representing a substantial decrease from the 50 mol% typically required in DMSO-based formulations. Films produced under these conditions exhibited superior crystallinity, as evidenced by narrower full-width at half maximum (FWHM) values in X-ray diffraction (XRD), and reduced defect densities. These structural improvements translated into enhanced optoelectronic properties, with devices achieving efficiency exceeding 23%, compared with ~20% for DMSO-based counterparts. Furthermore, the NMP-based system demonstrated improved long-term stability under continuous illumination. Full article
Show Figures

Figure 1

12 pages, 2381 KiB  
Article
FACl as a Bifunctional Additive to Enhance the Performance of Lead-Free Antimony-Based Perovskite Solar Cells
by Xinyu Gao, Zihao Gao, Zhen Sun, Ping Song, Xiyuan Feng and Zhixin Jin
Micromachines 2025, 16(4), 379; https://doi.org/10.3390/mi16040379 - 27 Mar 2025
Viewed by 519
Abstract
Lead halide perovskite solar cells (PSCs) have shown tremendous progress in the last few years. However, highly toxic Pb and its instability have restricted their further development. On the other hand, antimony-based perovskites such as cesium antimony iodide (Cs3Sb2I [...] Read more.
Lead halide perovskite solar cells (PSCs) have shown tremendous progress in the last few years. However, highly toxic Pb and its instability have restricted their further development. On the other hand, antimony-based perovskites such as cesium antimony iodide (Cs3Sb2I9) have shown high stability but low power conversion efficiency (PCE) due to the limited transfer of photocarriers and the poor quality of films. Here, we present a novel method to improve the performance of Cs3Sb2I9 PSCs through a FACl-modified buried interface. FACl acts as a bi-functional additive, and FA incorporation enhances the crystallinity and light absorption of films. Furthermore, treatment with FACl optimizes the level position of Cs3Sb2I9. In addition, transient photovoltage and transient photocurrent were employed to confirm the reduction of charge recombination and superior carrier transportation. By using a planar device structure, we found the PCE of a FACl–Cs3Sb2I9-based device to be 1.66%. The device, stored for 2 months under N2 conditions, showed a negligible loss in PCE. Overall, this study provides a new strategy to further enhance the performance of Sb-based PSCs. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

12 pages, 5015 KiB  
Article
6-(4-Pyridyl)Azulene Derivatives as Hole Transport Materials for Perovskite Solar Cells
by Yuanqing Sun, Zhangyan Wang, Tianyi Geng, Xinyue Liu, Yangyang Su, Yi Tian, Ming Cheng and Hongping Li
Materials 2025, 18(7), 1400; https://doi.org/10.3390/ma18071400 - 21 Mar 2025
Viewed by 505
Abstract
Azulene has been attracting much attention as a charge transfer material in organic electronics due to its inherent large dipole moment and small band gap, but its application in perovskite solar cells (PSCs) is very limited. Herein, azulene was applied as the core [...] Read more.
Azulene has been attracting much attention as a charge transfer material in organic electronics due to its inherent large dipole moment and small band gap, but its application in perovskite solar cells (PSCs) is very limited. Herein, azulene was applied as the core acceptor for hole transport materials (HTMs), and two molecules named Azu-Py-DF and Azu-Py-OMeTPA were designed and synthesized, in which 4-pyridyl was introduced on the 6-position of the 1,3-substituted azulene core to adjust energy levels. The different spatial orientations of pyridine and the azulene core improve the solubility and reduce the crystallinity of the material, which is conducive to creating a thin film morphology. Azu-Py-OMeTPA exhibited good hole and electron mobility compared with standard Spiro-OMeTAD. Applied as an HTM in PSCs, the Azu-Py-OMeTPA-based device achieved a power conversion efficiency (PCE) of 18.10%, which is higher than that of the 6-position unsubstituted counterpart. Nevertheless, the anticipated passivation effect of the 4-pyridyl group was diminished due to the electron-deficient nature of azulene’s seven-membered ring. These results demonstrate that optimizing the structure of azulene-based HTMs can significantly alter molecular spatial structure, film formation properties, electron delocalization characteristics and charge transport, and can lead to improved device performance, providing insights for the future design of novel HTMs. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

40 pages, 1207 KiB  
Review
Recent Advances in Flexible Solar Cells; Materials, Fabrication, and Commercialization
by Maoz Maoz, Zohair Abbas, Syed Abdul Basit Shah and Vanni Lughi
Sustainability 2025, 17(5), 1820; https://doi.org/10.3390/su17051820 - 21 Feb 2025
Cited by 2 | Viewed by 6014
Abstract
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so [...] Read more.
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so was once impossible. They have a wide range of applications due to their flexibility and moldability, making it possible to conform these modules to surfaces like curved rooftops and other irregular structures. In this paper, we provide a comprehensive review of all the materials used in flexible PV modules with a focus on their role in sustainability. We thoroughly discuss the active-layer materials for crystalline silicon (c-Si)-based solar cells (SC) and thin-film solar cells such as cadmium telluride (CdTe), as well as copper indium gallium diselenide (CIGS), amorphous thin-film silicon (a-Si), perovskite and organic solar cells. Various properties, such as the optical, barrier, thermal, and mechanical properties of different substrate materials, are reviewed. Transport layers and conductive electrode materials are discussed with a focus on emerging trends and contributions to sustainable PV technology. Various fabrication techniques involved in making flexible PV modules, along with advantages, disadvantages, and future trends, are highlighted in the paper. The commercialization of flexible PV is also discussed, which is a crucial milestone in advancing and adapting new technologies in the PV industry with a focus on contributing toward sustainability. Full article
Show Figures

Figure 1

15 pages, 3550 KiB  
Article
Enhancing Perovskite Solar Cell Stability by TCO Layer Presence Beneath MACl-Doped Perovskites
by Minkyu Song, Jinyoung Kim and Gyu Min Kim
Crystals 2025, 15(2), 152; https://doi.org/10.3390/cryst15020152 - 1 Feb 2025
Cited by 2 | Viewed by 1236
Abstract
Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology, yet their stability under environmental stressors remains a critical challenge. This study examines the substrate-dependent degradation mechanisms of perovskite films and evaluates the role of methylammonium chloride (MACl) incorporation. Devices fabricated on [...] Read more.
Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology, yet their stability under environmental stressors remains a critical challenge. This study examines the substrate-dependent degradation mechanisms of perovskite films and evaluates the role of methylammonium chloride (MACl) incorporation. Devices fabricated on ITO and glass substrates exhibited markedly different stability behaviors under high-humidity conditions. ITO substrates delayed the phase transition from the black α-phase to the yellow δ-phase due to stronger substrate–film interactions and reduced defect densities, while glass substrates facilitated rapid degradation through moisture infiltration and grain boundary instability. MACl incorporation enhanced the initial crystallinity and optoelectronic properties of the perovskite films, as evidenced by superior power conversion efficiency and photon absorption. However, residual MACl under humid conditions introduced structural instability, particularly on glass substrates. To address these challenges, a fully coated ITO structure, referred to as the Island Type design, was proposed. This structure eliminates exposed glass regions, leveraging the stabilizing properties of ITO to suppress moisture infiltration and prolong device durability. The findings provide a comprehensive understanding of the interplay between substrate properties and material composition in PSC stability and highlight the potential of structural optimizations to balance efficiency and durability for commercial applications. Full article
(This article belongs to the Special Issue Advances in Materials for Energy Conversion and Storage)
Show Figures

Graphical abstract

11 pages, 2905 KiB  
Article
Dimethyl Sulfoxide Mixed-Solvent Engineering for Efficient Perovskite/Silicon Tandem Solar Cell
by Haifeng Zhang, Youling He, Qian Li, Hao Zhang, Yinqing Sun, Tengteng Yang, Yinyi Ma, Tian Yang, Xindi Zheng and Lin Mao
Energies 2025, 18(1), 115; https://doi.org/10.3390/en18010115 - 30 Dec 2024
Viewed by 1606
Abstract
The integration of perovskite with silicon for constructing tandem solar cells (TSCs) represents a promising route in photovoltaic technology. The hybrid sequential deposition (HSD) method, combining thermal evaporation and spin-coating, is crucial for developing perovskite films in textured perovskite/silicon tandem solar cells. However, [...] Read more.
The integration of perovskite with silicon for constructing tandem solar cells (TSCs) represents a promising route in photovoltaic technology. The hybrid sequential deposition (HSD) method, combining thermal evaporation and spin-coating, is crucial for developing perovskite films in textured perovskite/silicon tandem solar cells. However, the process faces challenges due to incomplete reactions caused by the dense perovskite coverage layer (CPCL) formed from high-crystallinity precursors. The CPCL hinders the diffusion of organic salts into the bottom precursor layer, leading to performance degradation and accelerated device aging. Herein, this study explores several polar solvents as additives to n-butanol (nBA) solvent in order to enhance the permeability of organic salts through the CPCL, and we demonstrate that dimethyl sulfoxide (DMSO) as an additive solvent can effectively assist organic salts in rapidly diffusing through the precursor layer, thereby promoting the complete transformation of uniform perovskite crystals. The resulting perovskite films exhibited complete conversion, uniform crystallization, and improved quality. As a result, the target TSCs achieved an increased maximum power conversion efficiency (PCE) of 29.12%. This study offers a robust pathway for depositing high-quality perovskite films on industrial-grade textured silicon substrates, laying a solid foundation for advancing perovskite/silicon tandem solar cells technology. Full article
Show Figures

Figure 1

18 pages, 2363 KiB  
Article
Mixed Pt-Ni Halide Perovskites for Photovoltaic Application
by Huilong Liu, Rubaiya Murshed and Shubhra Bansal
Materials 2024, 17(24), 6196; https://doi.org/10.3390/ma17246196 - 18 Dec 2024
Viewed by 818
Abstract
Cs2PtI6 is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt [...] Read more.
Cs2PtI6 is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt with earth-abundant Ni in solution-processed Cs(PtxNi1−x)(I,Cl)3 thin films on the properties and stability of the perovskite material. Films fabricated with CsI and PtI2 precursors result in a perovskite phase with a bandgap of 2.13 eV which transitions into stable Cs2PtI6 with a bandgap of 1.6 eV upon annealing. The complete substitution of PtI2 in films with CsI + NiCl2 precursors results in a wider bandgap of 2.35 eV and SEM shows two phases—a rod-like structure identified as CsNi(I,Cl)3 and residual white particles of CsI, also confirmed by XRD and Raman spectra. Upon extended thermal annealing, the bandgap reduces to 1.65 eV and transforms to CsNiCl3 with a peak shift to higher 2-theta. The partial substitution of PtI2 with NiCl2 in mixed 50-50 Pt-Ni-based films produces a bandgap of 1.9 eV, exhibiting a phase of Cs(Pt,Ni)(I,Cl)3 composition. A similar bandgap of 1.85 eV and the same diffraction pattern with improved crystallinity is observed after 100 h of annealing, confirming the formation of a stable mixed Pt-Ni phase. Full article
(This article belongs to the Special Issue Advanced Energy Materials for Perovskite Solar Cells)
Show Figures

Figure 1

8 pages, 6337 KiB  
Communication
Improving the Antioxidant Properties of Tin-Based Perovskite for the Enhanced Performance of Near-Infrared Light-Emitting Diodes Through the Synergy of Sn and SnF2
by Yipeng Shen, Jianan Chen, Yuhan Si, Zhengguo Xiao, Kai Kang, Zhaobing Tang, Jing Wang and Chaoyu Xiang
Materials 2024, 17(24), 6059; https://doi.org/10.3390/ma17246059 - 11 Dec 2024
Viewed by 994
Abstract
Tin-based perovskite has emerged as an excellent luminescent material due to its non-toxicity and narrow bandgap compared to lead-based perovskite. However, its tin ions are easily oxidized by oxygen, which leads to increased vacancy defects and poor crystallinity, presenting a significant challenge in [...] Read more.
Tin-based perovskite has emerged as an excellent luminescent material due to its non-toxicity and narrow bandgap compared to lead-based perovskite. However, its tin ions are easily oxidized by oxygen, which leads to increased vacancy defects and poor crystallinity, presenting a significant challenge in obtaining high-quality perovskite films. In this context, we introduced an approach by synergistically adding SnF2 and tin powder into the precursor solution to enhance the antioxidation of Sn ions. This method effectively improved the crystallinity of the perovskite films, reduced the density of defect states, and enhanced the photoluminescence performance of the films. Based on these findings, we successfully fabricated tin-based near-infrared perovskite light-emitting diodes (PeLEDs). With a 20% improvement in the Sn2+ content in the film, we achieved a threefold increase in the external quantum efficiency of the devices, reaching 3.6%. Full article
(This article belongs to the Special Issue Advances in Perovskite Oxide Optoelectronic Functional Materials)
Show Figures

Graphical abstract

11 pages, 3350 KiB  
Article
CsPbBr3 and Cs2AgBiBr6 Composite Thick Films with Potential Photodetector Applications
by Merida Sotelo-Lerma, Leunam Fernandez-Izquierdo, Martin A. Ruiz-Molina, Igor Borges-Doren, Ross Haroldson and Manuel Quevedo-Lopez
Materials 2024, 17(20), 5123; https://doi.org/10.3390/ma17205123 - 21 Oct 2024
Cited by 1 | Viewed by 1769
Abstract
This paper investigates the optoelectronic properties of CsPbBr3, a lead-based perovskite, and Cs2AgBiBr6, a lead-free double perovskite, in composite thick films synthesized using mechanochemical and hot press methods, with poly(butyl methacrylate) as the matrix. Comprehensive characterization was [...] Read more.
This paper investigates the optoelectronic properties of CsPbBr3, a lead-based perovskite, and Cs2AgBiBr6, a lead-free double perovskite, in composite thick films synthesized using mechanochemical and hot press methods, with poly(butyl methacrylate) as the matrix. Comprehensive characterization was conducted, including X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV–visible spectroscopy (UV–Vis), and photoluminescence (PL). Results indicate that the polymer matrix does not significantly impact the crystalline structure of the perovskites but has a direct impact on the grain size and surface area, enhancing the interfacial charge transfer of the composites. Optical characterization indicates minimal changes in bandgap energies across all different phases, with CsPbBr3 exhibiting higher photocurrent than Cs2AgBiBr6. This is attributed to the CsPbBr3 superior charge carrier mobility. Both composites showed photoconductive behavior, with Cs2AgBiBr6 also demonstrating higher-energy (X-ray) photon detection. These findings highlight the potential of both materials for advanced photodetector applications, with Cs2AgBiBr6 offering an environmentally Pb-free alternative. Full article
Show Figures

Graphical abstract

17 pages, 4175 KiB  
Article
Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications
by Wingki Mey Hendra, Naohide Nagaya, Yuto Hibi, Norimitsu Yoshida, Takashi Sugiura, Saeid Vafaei and Kazuhiro Manseki
Materials 2024, 17(20), 5095; https://doi.org/10.3390/ma17205095 - 18 Oct 2024
Viewed by 1078
Abstract
We investigate the preparation of mesoscopic SnO2 nanoparticulate films using a Sn(IV) hydrate salt combined with a liquid pyrrolidone derivative to form a homogeneous precursor mixture for functional SnO2 nanomaterials. We demonstrate that N-methyl-2-pyrrolidone (NMP) plays a crucial role in forming [...] Read more.
We investigate the preparation of mesoscopic SnO2 nanoparticulate films using a Sn(IV) hydrate salt combined with a liquid pyrrolidone derivative to form a homogeneous precursor mixture for functional SnO2 nanomaterials. We demonstrate that N-methyl-2-pyrrolidone (NMP) plays a crucial role in forming uniform SnO2 films by both stabilizing the hydrolysis products of Sn(IV) sources and acting as a base liquid during nanoparticle growth. The hydrolysis of Sn(IV) was controlled by adjusting the reaction temperature to as low as 110 °C for 48 h. High-resolution TEM analysis revealed that highly crystalline SnO2 nanoparticles, approximately 3–5 nm in size, were formed. The SnO2 nanoparticles were deposited onto F-doped SnO2 glass and converted into dense particle films through heat treatments at 400 °C and 500 °C. This pyrrolidone-based nanoparticle synthesis enabled the production of not only crystallized SnO2 but also transparent and uniform films, most importantly by controlling the slow hydrolysis of Sn(IV) and polycondensation only with those two chemicals. These findings offer valuable insights for developing stable and uniform electron transport layers of SnO2 in mesoscopic solar cells, such as perovskite solar cells. Full article
Show Figures

Figure 1

17 pages, 381 KiB  
Review
A Review of Photovoltaic Waste Management from a Sustainable Perspective
by Abolfazl Babaei and Ali Nasr Esfahani
Electricity 2024, 5(4), 734-750; https://doi.org/10.3390/electricity5040036 - 14 Oct 2024
Cited by 2 | Viewed by 3366
Abstract
The rapid deployment of solar photovoltaic (PV) systems underscores their potential as vital clean energy solutions with reduced carbon emissions and increasingly competitive installation costs. This review examines PV waste management from a sustainable perspective, focusing on environmental impacts and technological advancements. Various [...] Read more.
The rapid deployment of solar photovoltaic (PV) systems underscores their potential as vital clean energy solutions with reduced carbon emissions and increasingly competitive installation costs. This review examines PV waste management from a sustainable perspective, focusing on environmental impacts and technological advancements. Various solar cell technologies, including crystalline silicon, thin-film, and emerging third-generation cells like perovskite and organic photovoltaics, are analyzed for their life cycle and environmental effects. Effective disposal and recycling methods, such as physical separation and thermal and chemical treatments, are critically evaluated to mitigate ecological harm. The study highlights the need for improved recycling processes and sustainable practices to enhance the environmental benefits of PV systems. Future solutions call for better recycling techniques, increased efficiency in renewable materials, and comprehensive life cycle assessments to support the global transition to sustainable energy. This review aims to foster the integration of sustainable practices in the renewable energy sector, ensuring that PV systems contribute to a cleaner and more sustainable future. Full article
Show Figures

Figure 1

Back to TopTop