A Review of Photovoltaic Waste Management from a Sustainable Perspective
Abstract
:1. Introduction
2. Environmental Sustainability Plays a Decisive Role
3. Types of Solar PV Cells
3.1. Thin-Film (TF) Solar Cell
3.2. Organic Photovoltaics
3.3. Perovskite Solar Cells
3.4. Quantum Dot Photovoltaics
4. Environmental Impacts
4.1. Greenhouse Gas Emissions
4.2. Heavy Metal Emission and Human Toxicity
5. What Can Be Done with Old Panels
5.1. Physical Separation
5.2. Thermal and Chemical Treatment
6. Future Sustainable Solutions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gay y García, C.; Bastien Olvera, B.A. The Importance of Increasing Actual INDCsź Ambitions to Meet The Paris Agreement Temperature Targets. In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Lisbon, Portugal, 29–31 July 2016; pp. 363–367. [Google Scholar]
- AlQallaf, N.; AlQallaf, A.; Ghannam, R. Solar Energy Systems Design Using Immersive Virtual Reality: A Multi-Modal Evaluation Approach. Solar 2024, 4, 329–350. [Google Scholar] [CrossRef]
- Paiano, A. Photovoltaic waste assessment in Italy. Renew. Sustain. Energy Rev. 2015, 41, 99–112. [Google Scholar] [CrossRef]
- Elzinga, D.; Bennett, S.; Best, D.; Burnard, K.; Cazzola, P.; D’Ambrosio, D.; Dulac, J.; Fernandez Pales, A.; Hood, C.; LaFrance, M.; et al. Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action; Paris International Energy Agency: Paris, France, 2015; Available online: https://www.iea.org/reports/energy-technology-perspectives-2015 (accessed on 29 May 2015).
- Shin, J.; Park, J.; Park, N. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Sol. Energy Mater. Sol. Cells 2017, 162, 1–6. [Google Scholar] [CrossRef]
- Azmi, A.N.; Kolhe, M.L. Photovoltaic based active generator: Energy control system using stateflow analysis. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015; pp. 18–22. [Google Scholar]
- Ali, I.; Shafiullah, G.; Urmee, T. A preliminary feasibility of roof-mounted solar PV systems in the Maldives. Renew. Sustain. Energy Rev. 2018, 83, 18–32. [Google Scholar] [CrossRef]
- Irena, I. Renewable Power Generation Costs in 2017; Report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Paris International Energy Agency. Snapshot of Global Photovoltaic Markets.Report IEA PVPS T1-33. 2018. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf (accessed on 10 September 2024).
- Amaro e Silva, R.; Benavides Cesar, L.; Manso Callejo, M.A.; Cira, C.I. Impact of Stationarizing Solar Inputs on Very-Short-Term Spatio-Temporal Global Horizontal Irradiance (GHI) Forecasting. Energies 2024, 17, 3527. [Google Scholar] [CrossRef]
- Vodapally, S.N.; Ali, M.H. A comprehensive review of solar photovoltaic (PV) technologies, architecture, and its applications to improved efficiency. Energies 2022, 16, 319. [Google Scholar] [CrossRef]
- Boudia, M.E.A.; Wang, Q.; Zhao, C. Simulation and Comparison of the Photovoltaic Performance of Conventional and Inverted Organic Solar Cells with SnO2 as Electron Transport Layers. Energies 2024, 17, 3302. [Google Scholar] [CrossRef]
- Kim, Y.; Skaggs, A. A Multi-Stage Approach to Assessing the Echo-Tech Feasibility of a Hybrid SAM-CREST Model for Solar PV Power Plants in Maryland, USA. Solar 2024, 4, 246–268. [Google Scholar] [CrossRef]
- Hughes, K.M.; Phillips, C.C. A Quantitative Analysis of the Need for High Conversion Efficiency PV Technologies in Carbon Mitigation Strategies. Solar 2024, 4, 209–221. [Google Scholar] [CrossRef]
- Chu, Y.; Meisen, P. Review and comparison of different solar energy technologies. Glob. Energy Netw. Inst. (GENI) San Diego CA 2011, 1, 1–52. [Google Scholar]
- Sawin, J.L.; Sverrisson, F.; Seyboth, K.; Adib, R.; Murdock, H.E.; Lins, C.; Brown, A.; Di Domenico, S.E.; Kielmanowicz, D.; Williamson, L.E.; et al. Renewables 2016 Global Status Report. Key Findings. A Record Breaking Year for Renewable Energy: New Installations, Policy Targets, Investment and Jobs. Mainstreaming Renewables: Guidance for Policy Makers; IAEA: Vienna, Austria, 2016. [Google Scholar]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Sandnes, B. Exergy Efficient Production, Storage and Distribution of Solar Energy. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2003. [Google Scholar]
- Stougie, L.; Giustozzi, N.; van der Kooi, H.; Stoppato, A. Environmental, economic and exergetic sustainability assessment of power generation from fossil and renewable energy sources. Int. J. Energy Res. 2018, 42, 2916–2926. [Google Scholar] [CrossRef]
- Sukumaran, S.; Sudhakar, K. Performance analysis of solar powered airport based on energy and exergy analysis. Energy 2018, 149, 1000–1009. [Google Scholar] [CrossRef]
- Jean, J.; Brown, P.R.; Jaffe, R.L.; Buonassisi, T.; Bulović, V. Pathways for solar photovoltaics. Energy Environ. Sci. 2015, 8, 1200–1219. [Google Scholar] [CrossRef]
- Natural Resources Canada. Assessment of the Environmental Performance of Solar Photovoltaic Technology: A Report Funded under the Clean Energy Fund. 2012. Available online: https://publications.gc.ca/collections/collection_2015/ec/En84-88-2012-eng.pdf (accessed on 21 May 2024).
- Weckend, S.; Wade, A.; Heath, G.A. End of Life Management: Solar Photovoltaic Panels; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016. [Google Scholar]
- Souliotis, M.; Arnaoutakis, N.; Panaras, G.; Kavga, A.; Papaefthimiou, S. Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications. Renew. Energy 2018, 126, 708–723. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiencies. 2024. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 21 May 2024).
- PSE. Fraunhofer Institute for Solar Energy Systems Ise. Photovoltaics Report. 2024. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 29 July 2024).
- Feldman, D.; Margolis, R. Fall 2022 Solar Industry Update; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar]
- Park, J.S.; Kim, S.; Xie, Z.; Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 2018, 3, 194–210. [Google Scholar] [CrossRef]
- Arifin, N.M.; Mhd Noor, E.E.; Mohamad, F.; Mohamad, N.; Mohamed Muzni, N.H. Enhancing the Properties of Nanostructure TiO2 Thin Film via Calcination Temperature for Solar Cell Application. Energies 2024, 17, 3415. [Google Scholar] [CrossRef]
- Khatri, I.; Kasik, C.; Sites, J.R. Performance of State-of-the-Art CdTe-Based Solar Cells: What Has Changed? IEEE J. Photovolt. 2024, 14, 745–751. [Google Scholar] [CrossRef]
- Pan, N.; Ghosh, S.; Hasan, M.N.; Ahmed, S.A.; Chatterjee, A.; Patwari, J.; Bhattacharya, C.; Qurban, J.; Khder, A.S.; Pal, S.K. Plasmon-Coupled Donor–Acceptor Type Organic Sensitizer-Based Photoanodes for Enhanced Photovoltaic Activity: Key Information from Ultrafast Dynamical Study. Energy Fuels 2022, 36, 9272–9281. [Google Scholar] [CrossRef]
- Sil, M.C.; Chen, L.S.; Lai, C.W.; Lee, Y.H.; Chang, C.C.; Chen, C.M. Enhancement of power conversion efficiency of dye-sensitized solar cells for indoor applications by using a highly responsive organic dye and tailoring the thickness of photoactive layer. J. Power Sources 2020, 479, 229095. [Google Scholar]
- Alnami, N.; Kumar, R.; Kuchuk, A.; Maidaniuk, Y.; Saha, S.K.; Alnami, A.A.; Alhelais, R.; Kawagy, A.; Ware, M.E.; Mazur, Y.I.; et al. InAs nanostructures for solar cell: Improved efficiency by submonolayer quantum dot. Sol. Energy Mater. Sol. Cells 2021, 224, 111026. [Google Scholar] [CrossRef]
- Nelson, J. Polymer: Fullerene bulk heterojunction solar cells. Mater. Today 2011, 14, 462–470. [Google Scholar] [CrossRef]
- Stellmach, K. What Can Organic Solar Cells Bring to the Table? 2021. Available online: https://www.greenbiz.com/article/what-can-organic-solar-cells-bring-table (accessed on 18 June 2024).
- Luther, J.; Nast, M.; Fisch, M.N.; Christoffers, D.; Pfisterer, F.; Meissner, D.; Nitsch, J.; Becker, M. Solar technology. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Jørgensen, M.; Norrman, K.; Krebs, F.C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686–714. [Google Scholar] [CrossRef]
- Po, R.; Carbonera, C.; Bernardi, A.; Tinti, F.; Camaioni, N. Polymer-and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Sol. Energy Mater. Sol. Cells 2012, 100, 97–114. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design rules for donors in bulk-heterojunction solar cells—Towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446. [Google Scholar] [CrossRef] [PubMed]
- H.K.P. University. PolyU Researchers Achieve Record 19.31% Efficiency with Organic Solar Cells. 2023. Available online: https://www.polyu.edu.hk/en/media/media-releases/2023/0529_polyu-researchers-achieve-record-efficiency/ (accessed on 12 June 2024).
- Ma, K.; Li, X.; Yang, F.; Liu, H. Lead leakage of Pb-based perovskite solar cells. Coatings 2023, 13, 1009. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef] [PubMed]
- Hamers, L. Perovskites power up the solar industry. Sci. Org. Retrieved 2017. Available online: https://www.sciencenews.org/article/perovskites-power-solar-industry (accessed on 10 May 2024).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- SciTechDaily. New World Record: Almost 30% Efficiency for Next-Generation Tandem Solar Cells. 2023. Available online: https://scitechdaily.com/new-world-record-almost-30-efficiency-for-next-generation-tandem-solar-cells/ (accessed on 6 May 2024).
- Mondal, S.; De, S.; Chakrabarti, P.; Maity, S. Impact of Carbon Nanotube (CNT) Based Transport Layer for Electrons on Metal-Doped Lead-Free Double Perovskite Solar Cell. IEEE J. Photovolt. 2024, 14, 765–776. [Google Scholar] [CrossRef]
- Han, W.; Deng, Y.; Liu, W.; Li, Z.; Liu, C.; Guo, W. Study on Improving Efficiency of Perovskite Solar Cells through Controlling Humidity Conditions and Nickel Oxide Composition. IEEE Electron. Device Lett. 2024, 45, 1626–1629. [Google Scholar] [CrossRef]
- Sun, K.; Wang, Y.; Xu, H.; Zhang, J.; Zhu, Y.; Hu, Z. Short-Term Stability of Perovskite Solar Cells Affected by In Situ Interface Modification. Solar RRL 2019, 3, 1900089. [Google Scholar] [CrossRef]
- Halal, A.; Plesz, B. A Comprehensive Study on the Thermal Behavior of Perovskite Solar Cell. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 1. [Google Scholar] [CrossRef]
- Shishodia, S.; Chouchene, B.; Gries, T.; Schneider, R. Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells. Nanomaterials 2023, 13, 2889. [Google Scholar] [CrossRef]
- Nozik, A.J. Quantum dot solar cells. Phys. Low-Dimens. Syst. Nanostruct. 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Şengül, H.; Theis, T.L. An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J. Clean. Prod. 2011, 19, 21–31. [Google Scholar] [CrossRef]
- Kittner, N.; Gheewala, S.H.; Kamens, R.M. An environmental life cycle comparison of single-crystalline and amorphous-silicon thin-film photovoltaic systems in Thailand. Energy Sustain. Dev. 2013, 17, 605–614. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on life cycle assessment of solar photovoltaic panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef]
- Celik, I.; Song, Z.; Cimaroli, A.J.; Yan, Y.; Heben, M.J.; Apul, D. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Sol. Energy Mater. Sol. Cells 2016, 156, 157–169. [Google Scholar] [CrossRef]
- Tsang, M.P.; Sonnemann, G.W.; Bassani, D.M. Life-cycle assessment of cradle-to-grave opportunities and environmental impacts of organic photovoltaic solar panels compared to conventional technologies. Sol. Energy Mater. Sol. Cells 2016, 156, 37–48. [Google Scholar] [CrossRef]
- Resalati, S.; Okoroafor, T.; Maalouf, A.; Saucedo, E.; Placidi, M. Life cycle assessment of different chalcogenide thin-film solar cells. Appl. Energy 2022, 313, 118888. [Google Scholar] [CrossRef]
- Chatzisideris, M.D.; Espinosa, N.; Laurent, A.; Krebs, F.C. Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. Sol. Energy Mater. Sol. Cells 2016, 156, 2–10. [Google Scholar] [CrossRef]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251. [Google Scholar] [CrossRef]
- Trabish, H.K. The Lowdown on the Safety of First Solar’s CdTe Thin Film. Greentech Media 2012. Available online: https://www.greentechmedia.com/articles/read/how-safe-is-first-solars-cdte-thin-film (accessed on 19 March 2012).
- Fthenakis, V.; Moskowitz, P. Thin-film Photovoltaic Cells: Health and Environmental Issues in their Manufacture Use and Disposal. Prog. Photovolta. Res. Appl. 1995, 3, 295–306. [Google Scholar] [CrossRef]
- Moskowitz, P.D. Environmental, health and safety issues related to the production and use of CdTe photovoltaic modules. Int. J. Sol. Energy 1992, 12, 259–281. [Google Scholar] [CrossRef]
- Yousuf, H.; Zahid, M.A.; Madara, P.C.; Jony, J.A.; Park, S.; Song, J.C.; Yi, J. Assessing soil pollution concerns in proximity to Fence-type solar photovoltaic system installations. Heliyon 2024, 10, e32156. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.R.; Bogust, P. Review of solar silicon recycling. In Energy Technology 2018: Carbon Dioxide Management and Other Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 463–470. [Google Scholar]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A review of recycling processes for photovoltaic modules. Sol. Panels Photovolt. Mater. 2018, 30. [Google Scholar] [CrossRef]
- Savvilotidou, V.; Antoniou, A.; Gidarakos, E. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels. Waste Manag. 2017, 59, 394–402. [Google Scholar] [CrossRef]
- Dias, P.; Javimczik, S.; Benevit, M.; Veit, H.; Bernardes, A.M. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manag. 2016, 57, 220–225. [Google Scholar] [CrossRef]
- Komoto, K.; Lee, J.S.; Zhang, J.; Ravikumar, D.; Sinha, P.; Wade, A.; Heath, G.A. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Divya, A.; Adish, T.; Kaustubh, P.; Zade, P. Review on recycling of solar modules/panels. Sol. Energy Mater. Sol. Cells 2023, 253, 112151. [Google Scholar] [CrossRef]
- Dias, P.; Dias, P.; Veit, H. Recycling crystalline silicon photovoltaic modules. In Emerging Photovoltaic Materials: Silicon Beyond; John Wiley & Sons: New York, NY, USA, 2018; pp. 61–102. [Google Scholar]
- Fiandra, V.; Sannino, L.; Andreozzi, C.; Corcelli, F.; Graditi, G. Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Manag. 2019, 87, 97–107. [Google Scholar] [CrossRef] [PubMed]
- D’Adamo, I.; Miliacca, M.; Rosa, P. Economic feasibility for recycling of waste crystalline silicon photovoltaic modules. Int. J. Photoenergy 2017, 2017, 4184676. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Granata, G.; Atia, T.A.; Altimari, P.; Havlik, T.; Toro, L. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Manag. 2017, 59, 422–431. [Google Scholar] [CrossRef]
- Orac, D.; Havlik, T.; Maul, A.; Berwanger, M. Acidic leaching of copper and tin from used consumer equipment. J. Min. Metall. Sect. Metall. 2015, 51, 153–161. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E.; Ostrowski, P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew. Energy 2010, 35, 1751–1759. [Google Scholar] [CrossRef]
- Jung, B.; Park, J.; Seo, D.; Park, N. Sustainable system for raw-metal recovery from crystalline silicon solar panels: From noble-metal extraction to lead removal. ACS Sustain. Chem. Eng. 2016, 4, 4079–4083. [Google Scholar] [CrossRef]
- Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397–403. [Google Scholar] [CrossRef]
- Coal, I. Analysis and Forecasts to 2023; Paris International Energy Agency: Paris, France, 2018. [Google Scholar] [CrossRef]
- Raugei, M.; Frankl, P. Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks. Energy 2009, 34, 392–399. [Google Scholar] [CrossRef]
- Preet, S.; Smith, S.T. A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook. J. Clean. Prod. 2024, 448, 141661. [Google Scholar] [CrossRef]
- Ngagoum Ndalloka, Z.; Vijayakumar Nair, H.; Alpert, S.; Schmid, C. Solar photovoltaic recycling strategies. Sol. Energy 2024, 270, 112379. [Google Scholar] [CrossRef]
SI No. | Power Generation | Anticipated Active Life (Year) | Cost per MW for Installation ($) | Load Factor (%) | Impact on Environment |
---|---|---|---|---|---|
1 | Thermal | 50–80 | 3–6 | >70 | High |
2 | Nuclear | 50–70 | 5 | >98 | High |
3 | Natural gas | 80–95 | 0.7–2 | >95 | Medium |
4 | Geothermal | 30–50 | 4.5–6 | >80 | Medium |
5 | Hydro | 100 | 3–6 | >85 | Low |
6 | Biomass | 20–25 | 4.5–8 | >75 | Low |
7 | Wind based | 25–30 | 2.2–6.2 | >38 | Low |
8 | Solar | 25–30 | 3.8–4.5 | >25 | Very Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaei, A.; Nasr Esfahani, A. A Review of Photovoltaic Waste Management from a Sustainable Perspective. Electricity 2024, 5, 734-750. https://doi.org/10.3390/electricity5040036
Babaei A, Nasr Esfahani A. A Review of Photovoltaic Waste Management from a Sustainable Perspective. Electricity. 2024; 5(4):734-750. https://doi.org/10.3390/electricity5040036
Chicago/Turabian StyleBabaei, Abolfazl, and Ali Nasr Esfahani. 2024. "A Review of Photovoltaic Waste Management from a Sustainable Perspective" Electricity 5, no. 4: 734-750. https://doi.org/10.3390/electricity5040036
APA StyleBabaei, A., & Nasr Esfahani, A. (2024). A Review of Photovoltaic Waste Management from a Sustainable Perspective. Electricity, 5(4), 734-750. https://doi.org/10.3390/electricity5040036