Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = cross-condition fault diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3777 KB  
Article
Study on a Fault Diagnosis Method for Heterogeneous Chiller Units Based on Transfer Learning
by Qiaolian Feng, Yongbao Liu, Yanfei Li, Guanghui Chang, Xiao Liang, Yongsheng Su and Gelin Cao
Entropy 2025, 27(10), 1049; https://doi.org/10.3390/e27101049 (registering DOI) - 9 Oct 2025
Viewed by 90
Abstract
As the core refrigeration equipment in cooling systems, the operational state of chiller units is crucial for ship support, equipment cooling, and mission stability. However, because of their sensitivity and the complexity of operating environments, obtaining large volumes of complete, fault-labeled data is [...] Read more.
As the core refrigeration equipment in cooling systems, the operational state of chiller units is crucial for ship support, equipment cooling, and mission stability. However, because of their sensitivity and the complexity of operating environments, obtaining large volumes of complete, fault-labeled data is difficult in practical engineering appli-cations. This limitation makes it challenging for traditional data-driven approaches to deliver accurate fault diagnoses. Furthermore, data collected from different devices or under varying operating conditions often differ significantly in both feature dimensions and distributions, i.e., data heterogeneity, which further complicates model transfer. To address these challenges, this study proposes a deep transfer learning–based fault di-agnosis method designed to leverage abundant knowledge from the source domain while adaptively learning features of the target domain. Given the persistent difficulties in collecting sufficient high-quality labeled fault data, traditional data-driven models continue to face restricted diagnostic performance on target equipment. At the same time, data heterogeneity across devices or operating conditions intensifies the challenge of cross-domain knowledge transfer. To overcome these issues, this study develops a heterogeneous transfer learning method that integrates a dual-channel autoencoder, domain adversarial training, and pseudo-label self-training. This combination enables precise small-sample knowledge transfer from the source to the target domain. Specifi-cally, the dual-channel autoencoder is first applied to align heterogeneous feature di-mensions. Then, a Gradient Reversal Layer (GRL) and a domain discriminator are in-troduced to extract domain-invariant features. In parallel, high-confidence pseu-do-labeled samples from the target domain are incorporated into joint training to im-prove generalization and robustness. Experimental results confirm that the method achieves high fault diagnosis accuracy in typical industrial application scenarios, ena-bling effective identification of common faults in various types of chiller units under conventional operating conditions, the proposed method achieves higher accuracy and F1-scores in multi-class fault diagnosis tasks compared with both traditional approaches and existing transfer learning methods. These findings provide a novel perspective for advancing the intelligent operation and maintenance of chiller units. Full article
Show Figures

Figure 1

29 pages, 3280 KB  
Article
MAJATNet: A Lightweight Multi-Scale Attention Joint Adaptive Adversarial Transfer Network for Bearing Unsupervised Cross-Domain Fault Diagnosis
by Lin Song, Yanlin Zhao, Junjie He, Simin Wang, Boyang Zhong and Fei Wang
Entropy 2025, 27(10), 1011; https://doi.org/10.3390/e27101011 - 26 Sep 2025
Viewed by 233
Abstract
Rolling bearings are essential for modern mechanical equipment and serve in various operational environments. This paper addresses the challenge of vibration data discrepancies in bearings across different operating conditions, which often results in inaccurate fault diagnosis. To tackle this related limitation, a novel [...] Read more.
Rolling bearings are essential for modern mechanical equipment and serve in various operational environments. This paper addresses the challenge of vibration data discrepancies in bearings across different operating conditions, which often results in inaccurate fault diagnosis. To tackle this related limitation, a novel lightweight multi-scale attention-based joint adaptive adversarial transfer network, termed MAJATNet, is developed. The proposed network integrates a feature extraction network innovation module with an improved loss function, namely IJA loss. The feature extraction module employs a one-dimensional multi-scale attention residual structure to derive characteristics from monitoring data of source and target domains. IJA loss evaluates the joint distribution discrepancy of high-dimensional features and labels between these domains. IJA loss integrates a joint maximum mean discrepancy (JMMD) loss with a domain adversarial learning loss, which directs the model’s focus toward categorical features while minimizing domain-specific features. The performance and advantages of MAJATNet are demonstrated through cross-domain fault diagnosis experiments using bearing datasets. Experimental results show that the proposed method can significantly improve the accuracy of cross-domain fault diagnosis for bearings. Full article
(This article belongs to the Special Issue Failure Diagnosis of Complex Systems)
Show Figures

Figure 1

24 pages, 7350 KB  
Article
An Attention-Driven Multi-Scale Framework for Rotating-Machinery Fault Diagnosis Under Noisy Conditions
by Le-Min Xu, Pak Kin Wong, Zhi-Jiang Gao, Zhi-Xin Yang, Jing Zhao and Xian-Bo Wang
Electronics 2025, 14(19), 3805; https://doi.org/10.3390/electronics14193805 - 25 Sep 2025
Viewed by 403
Abstract
Failures of rotating machinery, such as bearings and gears, are a critical concern in industrial systems, leading to significant operational downtime and economic losses. A primary research challenge is achieving accurate fault diagnosis under complex industrial noise, where weak fault signatures are often [...] Read more.
Failures of rotating machinery, such as bearings and gears, are a critical concern in industrial systems, leading to significant operational downtime and economic losses. A primary research challenge is achieving accurate fault diagnosis under complex industrial noise, where weak fault signatures are often masked by interference signals. This problem is particularly acute in demanding applications like offshore wind turbines, where harsh operating conditions and high maintenance costs necessitate highly robust and reliable diagnostic methods. To address this challenge, this paper proposes a novel Multi-Scale Domain Convolutional Attention Network (MSDCAN). The method integrates enhanced adaptive multi-domain feature extraction with a hybrid attention mechanism, combining information from the time, frequency, wavelet, and cyclic spectral domains with domain-specific attention weighting. A core innovation is the hybrid attention fusion mechanism, which enables cross-modal interaction between deep convolutional features and domain-specific features, enhanced by channel attention modules. The model’s effectiveness is validated on two public benchmark datasets for key rotating components. On the Case Western Reserve University (CWRU) bearing dataset, the MSDCAN achieves accuracies of 97.3% under clean conditions, 96.6% at 15 dB signal-to-noise ratio (SNR), 94.4% at 10 dB SNR, and a robust 85.5% under severe 5 dB SNR. To further validate its generalization, on the Xi’an Jiaotong University (XJTU) gear dataset, the model attains accuracies of 94.8% under clean conditions, 95.0% at 15 dB SNR, 83.6% at 10 dB SNR, and 63.8% at 5 dB SNR. These comprehensive results quantitatively validate the model’s superior diagnostic accuracy and exceptional noise robustness for rotating machinery, establishing a strong foundation for its application in reliable condition monitoring for complex systems, including wind turbines. Full article
(This article belongs to the Special Issue Advances in Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

25 pages, 8868 KB  
Article
AttenResNet18: A Novel Cross-Domain Fault Diagnosis Model for Rolling Bearings
by Gangjin Huang, Shanshan Wu, Yingxiao Zhang, Wuguo Wei, Weigang Fu, Junjie Zhang, Yuxuan Yang and Junheng Fu
Sensors 2025, 25(19), 5958; https://doi.org/10.3390/s25195958 - 24 Sep 2025
Viewed by 519
Abstract
To tackle the difficulties in cross-domain fault diagnosis for rolling bearings, researchers have devised numerous domain adaptation strategies to align feature distributions across varied domains. Nevertheless, current approaches tend to be vulnerable to noise disruptions and often neglect the distinctions between marginal and [...] Read more.
To tackle the difficulties in cross-domain fault diagnosis for rolling bearings, researchers have devised numerous domain adaptation strategies to align feature distributions across varied domains. Nevertheless, current approaches tend to be vulnerable to noise disruptions and often neglect the distinctions between marginal and conditional distributions during feature transfer. To resolve these shortcomings, this study presents an innovative fault diagnosis technique for cross-domain applications, leveraging the Attention-Enhanced Residual Network (AttenResNet18). This approach utilizes a one-dimensional attention mechanism to dynamically assign importance to each position within the input sequence, thereby capturing long-range dependencies and essential features, which reduces vulnerability to noise and enhances feature representation. Furthermore, we propose a Dynamic Balance Distribution Adaptation (DBDA) mechanism, which develops an MMD-CORAL Fusion Metric (MCFM) by combining CORrelation ALignment (CORAL) with Maximum Mean Discrepancy (MMD). Moreover, an adaptive factor is employed to dynamically regulate the balance between marginal and conditional distributions, improving adaptability to new and untested tasks. Experimental validation demonstrates that AttenResNet18 achieves an average accuracy of 99.89% on two rolling bearing datasets, representing a significant improvement in fault detection precision over existing methods. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 2210 KB  
Article
KG-SR-LLM: Knowledge-Guided Semantic Representation and Large Language Model Framework for Cross-Domain Bearing Fault Diagnosis
by Chengyong Xiao, Xiaowei Liu, Aziguli Wulamu and Dezheng Zhang
Sensors 2025, 25(18), 5758; https://doi.org/10.3390/s25185758 - 16 Sep 2025
Viewed by 642
Abstract
Bearing fault diagnosis is crucial for stable operation and safe manufacturing as industry intelligence becomes increasingly advanced. However, under complicated non-linear vibration modes and multiple operating conditions, most of the current diagnostic methods are limited in terms of cross-domain generalization. To address these [...] Read more.
Bearing fault diagnosis is crucial for stable operation and safe manufacturing as industry intelligence becomes increasingly advanced. However, under complicated non-linear vibration modes and multiple operating conditions, most of the current diagnostic methods are limited in terms of cross-domain generalization. To address these issues, this study develops a generalized diagnostic framework leveraging Large Language Models (LLMs), integrating multiple enhancements to improve both accuracy and adaptability. Initially, a structured representation approach is designed to transform raw vibration time series into interpretable text sequences by extracting physically meaningful features in both time and frequency domains. This transformation bridges the gap between sequential sensor data and semantic understanding. Furthermore, to explicitly incorporate bearings’ structural parameters and operating condition information, a knowledge-guided prompt tuning strategy based on Low-Rank Adaptation (LoRA-Prompt) is introduced. This mechanism enables the model to adapt more effectively to varying fault scenarios by embedding expert prior knowledge directly into the learning process. Finally, a generalized fault diagnosis method named Knowledge-Guided Semantic Representation and Large Language Model (KG-SR-LLM) is established. Large-scale experiments using 11 public datasets from industrial, aerospace, and energy fields are carried out to extensively evaluate its performance. Based on experiment analysis and a comparison of results, KG-SR-LLM is superior to classical deep learning models by 9.22%, reaching an average diagnostic accuracy of 98.36%. KG-SR-LLM is effective for handling few-shot transfer and cross-condition adaptation tasks. All these results illustrate the theoretical significance and application benefit of KG-SR-LLM for intelligent fault diagnosis of bearings. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 2890 KB  
Article
Multi-Target Adversarial Learning for Partial Fault Detection Applied to Electric Motor-Driven Systems
by Francisco Arellano Espitia, Miguel Delgado-Prieto, Joan Valls Pérez and Juan Jose Saucedo-Dorantes
Appl. Sci. 2025, 15(18), 10091; https://doi.org/10.3390/app151810091 - 15 Sep 2025
Viewed by 506
Abstract
Deep neural network-based fault diagnosis is gaining significant attention within the Industry 4.0 framework, yet practical deployment is still hindered by domain shift, partial label mismatch, and class imbalance. In this regard, this paper proposes a Multi-Target Adversarial Learning for Partial Fault Diagnosis [...] Read more.
Deep neural network-based fault diagnosis is gaining significant attention within the Industry 4.0 framework, yet practical deployment is still hindered by domain shift, partial label mismatch, and class imbalance. In this regard, this paper proposes a Multi-Target Adversarial Learning for Partial Fault Diagnosis (MTAL-PFD), an extension of adversarial and discrepancy-based domain adaptation tailored to single-source, multi-target (1SmT) partial fault diagnosis in electric motor-driven systems. The framework transfers knowledge from a labeled source to multiple unlabeled target domains by combining dual 1D-CNN feature extractors with adversarial domain discriminators, an inconsistency-based regularizer to stabilize learning, and class-aware weighting to mitigate partial label shift by down-weighting outlier source classes. Thus, the proposed scheme combines a multi-objective approach with partial domain adaptation applied to the diagnosis of electric motor-driven systems. The proposed model is evaluated across 24 cross-domain tasks and varying operating conditions on two motor test benches, showing consistent improvements over representative baselines. Full article
(This article belongs to the Special Issue AI-Based Machinery Health Monitoring)
Show Figures

Figure 1

21 pages, 11250 KB  
Article
Fault Diagnosis of Wind Turbine Rotating Bearing Based on Multi-Mode Signal Enhancement and Fusion
by Shaohu Ding, Guangsheng Zhou, Xinyu Wang and Weibin Li
Entropy 2025, 27(9), 951; https://doi.org/10.3390/e27090951 - 13 Sep 2025
Viewed by 401
Abstract
Wind turbines operate under harsh conditions, heightening the risk of rotating bearing failures. While fault diagnosis using acoustic or vibration signals is feasible, single-modal methods are highly vulnerable to environmental noise and system uncertainty, reducing diagnostic accuracy. Existing multi-modal approaches also struggle with [...] Read more.
Wind turbines operate under harsh conditions, heightening the risk of rotating bearing failures. While fault diagnosis using acoustic or vibration signals is feasible, single-modal methods are highly vulnerable to environmental noise and system uncertainty, reducing diagnostic accuracy. Existing multi-modal approaches also struggle with noise interference and lack causal feature exploration, limiting fusion performance and generalization. To address these issues, this paper proposes CAVF-Net—a novel framework integrating bidirectional cross-attention (BCA) and causal inference (CI). It enhances Mel-Frequency Cepstral Coefficients (MFCCs) of acoustic and short-time Fourier transform (STFT) features of vibration via BCA and employs CI to derive adaptive fusion weights, effectively preserving causal relationships and achieving robust cross-modal integration. The fused features are classified for fault diagnosis under real-world conditions. Experiments show that CAVF-Net attains 99.2% accuracy with few iterations on clean data and maintains 95.42% accuracy in high-entropy multi-noise environments—outperforming single-model acoustic and vibration by 16.32% and 8.86%, respectively, while significantly reducing information uncertainty in downstream classification. Full article
(This article belongs to the Special Issue Failure Diagnosis of Complex Systems)
Show Figures

Figure 1

25 pages, 4064 KB  
Article
Variable Working Condition Fault Diagnosis Method for Rotating Machinery Based on Dual-Task Cognitive Cost Sensitivity
by Qianwen Jiang, Jinghua Xu, Shuyou Zhang, Xiaojian Liu and Kang Wang
Big Data Cogn. Comput. 2025, 9(9), 232; https://doi.org/10.3390/bdcc9090232 - 8 Sep 2025
Viewed by 477
Abstract
Accurate fault diagnosis of rotating machinery in complex environments and under changing operating conditions remains a key challenge in industrial systems. In this paper, we propose a novel fault diagnosis algorithm named dual-task cognitive cost sensitivity (DCCS), designed for high-accuracy diagnosis of rotary [...] Read more.
Accurate fault diagnosis of rotating machinery in complex environments and under changing operating conditions remains a key challenge in industrial systems. In this paper, we propose a novel fault diagnosis algorithm named dual-task cognitive cost sensitivity (DCCS), designed for high-accuracy diagnosis of rotary bearing faults and small-sample scenarios under variable working conditions. The method integrates four modules: CNN for local feature extraction, LSTM for temporal features, Softmax for classification, and a DCCS-based hyperparameter optimization module. A dual-task learning objective is formulated by combining losses from both full-condition and few-shot variable-condition datasets, with adaptive cost-sensitive weighting to balance learning focus. The integration of cognitive cost sensitivity with transfer learning enhances the model’s adaptability, allowing it to flexibly generalize across different operating conditions. Experiments on the CWRU dataset demonstrate that the method achieves 99.33% accuracy within fewer training epochs and shows strong robustness to noise. Compared with mainstream optimization methods, DCCS offers higher efficiency with reduced computation time. In cross-condition diagnosis, it improves accuracy by up to 10.94 percentage points over the original Alpha Evolution algorithm, effectively addressing the challenge of limited samples in varying environments. Full article
(This article belongs to the Special Issue Smart Manufacturing in the AI Era)
Show Figures

Figure 1

26 pages, 8009 KB  
Article
Bearing Fault Diagnosis Based on Golden Cosine Scheduler-1DCNN-MLP-Cross-Attention Mechanisms (GCOS-1DCNN-MLP-Cross-Attention)
by Aimin Sun, Kang He, Meikui Dai, Liyong Ma, Hongli Yang, Fang Dong, Chi Liu, Zhuo Fu and Mingxing Song
Machines 2025, 13(9), 819; https://doi.org/10.3390/machines13090819 - 6 Sep 2025
Viewed by 401
Abstract
In contemporary industrial machinery, bearings are a vital component, so the ability to diagnose bearing faults is extremely important. Current methodologies face challenges in feature extraction and perform suboptimally in environments with high noise levels. This paper proposes an enhanced, multimodal, feature-fusion-bearing fault [...] Read more.
In contemporary industrial machinery, bearings are a vital component, so the ability to diagnose bearing faults is extremely important. Current methodologies face challenges in feature extraction and perform suboptimally in environments with high noise levels. This paper proposes an enhanced, multimodal, feature-fusion-bearing fault diagnosis model. Integrating a 1DCNN-dual MLP framework with an enhanced two-way cross-attention mechanism enables in-depth feature fusion. Firstly, the raw fault time-series data undergo fast Fourier transform (FFT). Then, the original time-series data are input into a multi-layer perceptron (MLP) and a one-dimensional convolutional neural network (1DCNN) model. The frequency-domain data are then entered into the other multi-layer perceptron (MLP) model to extract deep features in both the time and frequency domains. These features are then fed into a serial bidirectional cross-attention mechanism for feature fusion. At the same time, a GCOS learning rate scheduler has been developed to automatically adjust the learning rate. Following fifteen independent experiments on the Case Western Reserve University bearing dataset, the fusion model achieved an average accuracy rate of 99.83%. Even in a high-noise environment (0 dB), the model achieved an accuracy rate of 90.66%, indicating its ability to perform well under such conditions. Its accuracy remains at 86.73%, even under 0 dB noise and variable operating conditions, fully demonstrating its exceptional robustness. Full article
Show Figures

Figure 1

20 pages, 1325 KB  
Article
Intelligent Fault Diagnosis for Cross-Domain Few-Shot Learning of Rotating Equipment Based on Mixup Data Augmentation
by Kun Yu, Yan Li, Qiran Zhan, Yongchao Zhang and Bin Xing
Machines 2025, 13(9), 807; https://doi.org/10.3390/machines13090807 - 3 Sep 2025
Viewed by 614
Abstract
Existing fault diagnosis methods assume the identical distribution of training and test data, failing to adapt to source–target domain differences in industrial scenarios and limiting generalization. They also struggle to explore inter-domain correlations with scarce labeled target samples, leading to poor convergence and [...] Read more.
Existing fault diagnosis methods assume the identical distribution of training and test data, failing to adapt to source–target domain differences in industrial scenarios and limiting generalization. They also struggle to explore inter-domain correlations with scarce labeled target samples, leading to poor convergence and generalization. To address this, our paper proposes a cross-domain few-shot intelligent fault diagnosis method based on Mixup data augmentation. Firstly, a Mixup data augmentation method is used to linearly combine source domain and target domain data in a specific proportion to generate mixed-domain data, enabling the model to learn correlations and features between data from different domains and improving its generalization ability in cross-domain few-shot learning tasks. Secondly, a feature decoupling module based on the self-attention mechanism is proposed to extract domain-independent features and domain-related features, allowing the model to further reduce the domain distribution gap and effectively generalize source domain knowledge to the target domain. Then, the model parameters are optimized through a multi-task learning mechanism consisting of sample classification tasks and domain classification tasks. Finally, applications in classification tasks on multiple sets of equipment fault datasets show that the proposed method can significantly improve the fault recognition ability of the diagnosis model under the conditions of large distribution differences in the target domain and scarce labeled samples. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

24 pages, 3681 KB  
Article
A Novel Transfer Kernel Enabled Kernel Extreme Learning Machine Model for Cross-Domain Condition Monitoring and Fault Diagnosis of Bearings
by Haobo Yang, Hui Wang, Jing Meng, Wenhui Sun and Chao Chen
Machines 2025, 13(9), 793; https://doi.org/10.3390/machines13090793 - 1 Sep 2025
Viewed by 393
Abstract
Kernel transfer learning (KTL), as a kind of statistical transfer learning (STL), has provided significant solutions for cross-domain condition monitoring and fault diagnosis of bearings due to its ability to capture relationships and reduce the gap between source and target domains. However, most [...] Read more.
Kernel transfer learning (KTL), as a kind of statistical transfer learning (STL), has provided significant solutions for cross-domain condition monitoring and fault diagnosis of bearings due to its ability to capture relationships and reduce the gap between source and target domains. However, most conventional kernel transfer methods only set a weighting parameter ranging from 0 to 1 for those functions measuring cross-domain differences, while the intra-domain differences are ignored, which fails to completely characterize the distributional differences to some extent. To overcome these challenges, a novel transfer kernel enabled kernel extreme learning machine (TK-KELM) model is proposed. For model pre-training, a parallel structure is designed to represent the state and change of vibration signals more comprehensively. Subsequently, intra-domain correlation is introduced into the kernel function, which aims to release the weight parameters that describe the inter-domain correlation and break the range limit of 0–1. Consequently, intra-domain as well as inter-domain correlations can boost the authenticity of the transfer kernel jointly. Furthermore, a similarity-guided feature-directed transfer kernel optimization strategy (SFTKOS) is proposed to refine model parameters by calculating domain similarity across different feature scales. Subsequently, the kernels extracted from different scales are fused as the core functions of TK-KELM. In addition, an integration framework via function principal component analysis with maximum mean difference (FPCA-MMD) is designed to extract the multi-scale domain-invariant degradation indicator for boosting the performance of TK-KELM. Finally, related experiments verify the effectiveness and superiority of the proposed TK-KELM model, improving the accuracy of condition monitoring and fault diagnosis. Full article
Show Figures

Figure 1

43 pages, 17950 KB  
Article
Fault Diagnosis of Rolling Bearings Based on HFMD and Dual-Branch Parallel Network Under Acoustic Signals
by Hengdi Wang, Haokui Wang and Jizhan Xie
Sensors 2025, 25(17), 5338; https://doi.org/10.3390/s25175338 - 28 Aug 2025
Cited by 1 | Viewed by 615
Abstract
This paper proposes a rolling bearing fault diagnosis method based on HFMD and a dual-branch parallel network, aiming to address the issue of diagnostic accuracy being compromised by the disparity in data quality across different source domains due to sparse feature separation in [...] Read more.
This paper proposes a rolling bearing fault diagnosis method based on HFMD and a dual-branch parallel network, aiming to address the issue of diagnostic accuracy being compromised by the disparity in data quality across different source domains due to sparse feature separation in rolling bearing acoustic signals. Traditional methods face challenges in feature extraction, sensitivity to noise, and difficulties in handling coupled multi-fault conditions in rolling bearing fault diagnosis. To overcome these challenges, this study first employs the HawkFish Optimization Algorithm to optimize Feature Mode Decomposition (HFMD) parameters, thereby improving modal decomposition accuracy. The optimal modal components are selected based on the minimum Residual Energy Index (REI) criterion, with their time-domain graphs and Continuous Wavelet Transform (CWT) time-frequency diagrams extracted as network inputs. Then, a dual-branch parallel network model is constructed, where the multi-scale residual structure (Res2Net) incorporating the Efficient Channel Attention (ECA) mechanism serves as the temporal branch to extract key features and suppress noise interference, while the Swin Transformer integrating multi-stage cross-scale attention (MSCSA) acts as the time-frequency branch to break through local perception bottlenecks and enhance classification performance under limited resources. Finally, the time-domain graphs and time-frequency graphs are, respectively, input into Res2Net and Swin Transformer, and the features from both branches are fused through a fully connected layer to obtain comprehensive fault diagnosis results. The research results demonstrate that the proposed method achieves 100% accuracy in open-source datasets. In the experimental data, the diagnostic accuracy of this study demonstrates significant advantages over other diagnostic models, achieving an accuracy rate of 98.5%. Under few-shot conditions, this study maintains an accuracy rate no lower than 95%, with only a 2.34% variation in accuracy. HFMD and the dual-branch parallel network exhibit remarkable stability and superiority in the field of rolling bearing fault diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 6265 KB  
Article
A Multi-Level Fusion Framework for Bearing Fault Diagnosis Using Multi-Source Information
by Xiaojun Deng, Yuanhao Sun, Lin Li and Xia Peng
Processes 2025, 13(8), 2657; https://doi.org/10.3390/pr13082657 - 21 Aug 2025
Cited by 1 | Viewed by 598
Abstract
Rotating machinery is essential to modern industrial systems, where rolling bearings play a critical role in ensuring mechanical stability and operational efficiency. Failures in bearings can result in serious safety risks and significant financial losses, which highlights the need for accurate and robust [...] Read more.
Rotating machinery is essential to modern industrial systems, where rolling bearings play a critical role in ensuring mechanical stability and operational efficiency. Failures in bearings can result in serious safety risks and significant financial losses, which highlights the need for accurate and robust methods for diagnosing bearing faults. Traditional diagnostic methods relying on single-source data often fail to fully leverage the rich information provided by multiple sensors and are more prone to performance degradation under noisy conditions. Therefore, this paper proposes a novel bearing fault diagnosis method based on a multi-level fusion framework. First, the Symmetrized Dot Pattern (SDP) method is applied to fuse multi-source signals into unified SDP images, enabling effective fusion at the data level. Then, a combination of RepLKNet and Bidirectional Gated Recurrent Unit (BiGRU) networks extracts multi-modal features, which are then fused through a cross-attention mechanism to enhance feature representation. Finally, information entropy is utilized to assess the reliability of each feature channel, enabling dynamic weighting to further strengthen model robustness. The experiments conducted on public datasets and noise-augmented datasets demonstrate that the proposed method significantly surpasses other single-source and multi-source data fusion models in terms of diagnostic accuracy and robustness to noise. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

18 pages, 18060 KB  
Article
A Cross-Modal Multi-Layer Feature Fusion Meta-Learning Approach for Fault Diagnosis Under Class-Imbalanced Conditions
by Haoyu Luo, Mengyu Liu, Zihao Deng, Zhe Cheng, Yi Yang, Guoji Shen, Niaoqing Hu, Hongpeng Xiao and Zhitao Xing
Actuators 2025, 14(8), 398; https://doi.org/10.3390/act14080398 - 11 Aug 2025
Viewed by 598
Abstract
In practical applications, intelligent diagnostic methods for actuator-integrated gearboxes in industrial driving systems encounter challenges such as the scarcity of fault samples and variable operating conditions, which undermine diagnostic accuracy. This paper introduces a multi-layer feature fusion meta-learning (MLFFML) approach to address fault [...] Read more.
In practical applications, intelligent diagnostic methods for actuator-integrated gearboxes in industrial driving systems encounter challenges such as the scarcity of fault samples and variable operating conditions, which undermine diagnostic accuracy. This paper introduces a multi-layer feature fusion meta-learning (MLFFML) approach to address fault diagnosis problems in cross-condition scenarios with class imbalance. First, meta-training is performed to develop a mature fault diagnosis model on the source domain, obtaining cross-domain meta-knowledge; subsequently, meta-testing is conducted on the target domain, extracting meta-features from limited fault samples and abundant healthy samples to rapidly adjust model parameters. For data augmentation, this paper proposes a frequency-domain weighted mixing (FWM) method that preserves the physical plausibility of signals while enhancing sample diversity. Regarding the feature extractor, this paper integrates shallow and deep features by replacing the first layer of the feature extraction module with a dual-stream wavelet convolution block (DWCB), which transforms actuator vibration or acoustic signals into the time-frequency space to flexibly capture fault characteristics and fuses information from both amplitude and phase aspects; following the convolutional network, an encoder layer of the Transformer network is incorporated, containing multi-head self-attention mechanisms and feedforward neural networks to comprehensively consider dependencies among different channel features, thereby achieving a larger receptive field compared to other methods for actuation system monitoring. Furthermore, this paper experimentally investigates cross-modal scenarios where vibration signals exist in the source domain while only acoustic signals are available in the target domain, specifically validating the approach on industrial actuator assemblies. Full article
Show Figures

Figure 1

20 pages, 6192 KB  
Article
A Data-Driven Fault Diagnosis Method for Marine Steam Turbine Condensate System Based on Deep Transfer Learning
by Yuhui Liu, Liping Chen, Duansen Shangguan and Chengcheng Yu
Machines 2025, 13(8), 708; https://doi.org/10.3390/machines13080708 - 10 Aug 2025
Viewed by 489
Abstract
Accurate fault diagnosis in marine steam turbine condensate systems is challenged by insufficient real fault samples and dynamic operational conditions. To address this limitation, DTL-DFD, a novel framework integrating digital twins (DTs) and deep transfer learning (DTL), is proposed, wherein a high-fidelity physics-constrained [...] Read more.
Accurate fault diagnosis in marine steam turbine condensate systems is challenged by insufficient real fault samples and dynamic operational conditions. To address this limitation, DTL-DFD, a novel framework integrating digital twins (DTs) and deep transfer learning (DTL), is proposed, wherein a high-fidelity physics-constrained digital twin model is constructed through the systematic injection of six diagnostic classes (1 normal + 5 faults), including insufficient circulation water flow.Through an innovative all-layer parameter initialization with a partial fine-tuning (ALPT-PF) strategy, all weights and biases from a pre-trained one-dimensional convolutional neural network (1D-CNN) were fully transferred to the target model, which was subsequently fine-tuned via a hierarchical learning rate mechanism to adapt to real-world distribution discrepancies. Experimental results demonstrate 94.34% accuracy on cross-distribution test sets with a 4.72% improvement over state-of-the-art methods, confirming significant enhancements in generalization capability and diagnostic stability under small-sample conditions with significant real data reduction, thereby providing an effective solution for the intelligent operation and maintenance of marine steam turbine systems. Full article
Show Figures

Figure 1

Back to TopTop