Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = crack tip opening displacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7392 KiB  
Article
The Influence of Temperature on the Fracture Toughness and Fracture Mechanism of Ferritic Nodular Cast Iron
by Guobin Duan, Yu Jiang, Yongxin Zhang, Jibin Zhang and Xuechong Ren
Metals 2025, 15(8), 828; https://doi.org/10.3390/met15080828 - 23 Jul 2025
Viewed by 288
Abstract
Nodular Cast Iron (NCI, also known as ductile iron) is widely used in important components such as crankshafts for automotive engines and internal combustion engines, as well as storage and transportation containers for spent fuel in nuclear power plants, due to its good [...] Read more.
Nodular Cast Iron (NCI, also known as ductile iron) is widely used in important components such as crankshafts for automotive engines and internal combustion engines, as well as storage and transportation containers for spent fuel in nuclear power plants, due to its good comprehensive mechanical properties such as strength, toughness, and wear resistance. The effect of temperature on the fracture behavior of NCI was investigated using compact tensile (CT) specimens at different temperatures. The results showed that the conditional fracture toughness parameter (KQ) of the NCI specimens firstly increased and then decreased with decreasing temperature. The crack tip opening displacement δm shows a significant ductile–brittle transition behavior with the decreasing of temperature. δm remains constant in the upper plateau region but sharply decreases in the ductile–brittle region (−60 °C to −100 °C) and stabilizes at a smaller value in the lower plateau region. Multiscale fractographic analysis indicated that the fracture mechanism changed from ductile fracture (above −60 °C) to ductile–brittle mixed (−60 °C to −100 °C) and then to completely brittle fracture (below −100 °C). As the temperature decreased, the fracture characteristics changed from ductile dimples to dimple and cleavage mixed and then to brittle cleavage. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Figure 1

14 pages, 10083 KiB  
Article
Characteristics of Separations in Fracture After Crack Tip Opening Displacement Tests of Low-Carbon Microalloyed Offshore Steel S460MLO
by Eugene Goli-Oglu, Marco Palombo and Andrei Filatov
Alloys 2025, 4(2), 6; https://doi.org/10.3390/alloys4020006 - 23 Apr 2025
Viewed by 729
Abstract
Using the results from testing industrial batches of 23 mm steel heavy plates after thermomechanical rolling and subsequent post-weld heat treatment, the patterns of fatigue crack formation in the fracture specimens during CTOD (Crack Tip Opening Displacement) testing for fracture toughness are investigated. [...] Read more.
Using the results from testing industrial batches of 23 mm steel heavy plates after thermomechanical rolling and subsequent post-weld heat treatment, the patterns of fatigue crack formation in the fracture specimens during CTOD (Crack Tip Opening Displacement) testing for fracture toughness are investigated. Visual, microstructural, and fractographic studies of the nature of fracture formation and the surface of the secondary separations have been conducted. The probable causes of the manifestation of the potential “pop-in” effect on the load–displacement diagrams of the notch opening displacement are described, as well as its potentially negative impact on the interpretation of test results. Full article
Show Figures

Figure 1

18 pages, 10080 KiB  
Article
SCC Susceptibility of Polystyrene/TiO2 Nanocomposite-Coated Thin-Sheet Aluminum Alloy 2024—T3 in 3.5% NaCl
by Cheng-fu Chen, Brian Baart, John Halford and Junqing Zhang
Eng 2025, 6(4), 83; https://doi.org/10.3390/eng6040083 - 21 Apr 2025
Viewed by 505
Abstract
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a [...] Read more.
The effectiveness of polystyrene (PS)/TiO2 nanocomposite coatings in reducing stress–corrosion cracking (SCC) susceptibility of aluminum alloy 2024-T3 (AA2024-T3) was evaluated using an accelerated stress–corrosion test. Polystyrene (PS)-based coatings incorporating TiO2 nanoparticles with three different aspect ratios (ARs) were compared to a bare polystyrene coating. A compact tension (CT) specimen (5 mm thick) was coated for testing in a synergistic stress–corrosion environment. A slow constant displacement rate of 1.25 nm/s was applied in the load-line direction of the specimen to gradually open the crack mouth, while the crack tip was periodically dosed with a 3.5 wt.% NaCl solution. Load-displacement data were recorded and analyzed to calculate the J-integral, according to Standard ASTM E1820, for each coated specimen tested under laboratory-controlled SCC conditions. The fracture toughness, stress intensity, and six other SCC susceptibility indices were further developed to compare the performance of each coating in enhancing SCC resistance. The results revealed a strong dependence of SCC resistance on the nanoparticle aspect ratio, with the nanocomposite coating featuring an AR of 1 performing the best. The SCC behavior was reflected in the fractography of the fractured halves of a specimen, where cleavage was observed during the very slow, stable cracking stage, and dimples formed as a result of fast, unstable cracking toward the end of testing. These findings highlight the potential of tailored nanocomposite coatings to enhance the durability of aerospace-grade aluminum alloys. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

12 pages, 5896 KiB  
Article
Comparison of the Modified CTOD Measurement Method with the Double Clip Gauge Method in a Compact Tension Specimen
by Jeong Yeol Park, Myung Hyun Kim and Chang Wook Ji
Materials 2025, 18(2), 310; https://doi.org/10.3390/ma18020310 - 11 Jan 2025
Viewed by 1065
Abstract
For allowable defect analyses, the fracture toughness of materials needs to be accurately predicted. In this regard, a lower fluctuation of fracture toughness can lead to reduction in safety and economic risks. Crack tip opening displacement (CTOD), which is the representative parameter for [...] Read more.
For allowable defect analyses, the fracture toughness of materials needs to be accurately predicted. In this regard, a lower fluctuation of fracture toughness can lead to reduction in safety and economic risks. Crack tip opening displacement (CTOD), which is the representative parameter for fracture toughness, can be measured by various methods, such as the δ5, the J-conversion method, the single clip gauge method, and the double clip gauge method. When calculating CTOD from test results, the principle of similar triangles, which adopts the plastic hinge model, is influenced by the rotation factor, rp. Therefore, in order to reduce the fluctuation of CTOD, the exact value of rp must be defined. This study investigates various methods to predict fracture toughness in metallic materials, and assess the pros and cons of each method. Moreover, the equation of rp is modified by using a double clip gauge in compact tension (CT) to reduce the fluctuation of CTOD. The rp value is derived from 0.55 to 0.68, using the double clip gauge method. Finite element analysis is used to derive the rp values, which range from 0.50 to 0.66, in order to verify the validity of the derived rp values. This ensures the validity of the rp value derived from the experiment. In addition, the fluctuation of CTOD, based on the modified equation of rp, is lower than that using the single clip gauge method, according to BS 7448. Full article
(This article belongs to the Special Issue Engineering Materials and Structural Integrity)
Show Figures

Figure 1

16 pages, 7942 KiB  
Article
Study on the Mechanism Between Weld Microstructure and Crack Tie Opening Displacement Fracture Toughness of the Steel Catenary Riser
by Yuxi Cao, Shubiao Yin, Ba Li, Shujun Jia, Yuan Li, Yuqin Qin, Rui Hong and Kangxin Shuai
Materials 2025, 18(1), 176; https://doi.org/10.3390/ma18010176 - 3 Jan 2025
Viewed by 777
Abstract
Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction [...] Read more.
Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified. The results show that the main structure in the weld of the steel catenary riser is acicular ferrite (AF), but there is also often side lath plate ferrite (FSP) and grain boundary ferrite (GBF). With the increase in the proportion of FSP and GBF in the weld microstructure, the CTOD fracture toughness of the weld decreases gradually. The weld AF is a braided cross arrangement structure, and most of the grain boundary orientation difference is higher than 45°. The effective grain size refinement of AF can effectively prevent crack propagation and significantly improve fracture toughness. GBF is distributed along proto-austenitic grain boundaries PAGB, and the large hardness difference between the GBF and the AF matrix weakens the grain boundary. Cracks can easy be initiated at the interface position of the two phases and can propagate along the GBF grain boundary, resulting in the deterioration of toughness. Although the hardness of FSP is between that of GBF and AF, it destroys the continuity of the overall weld microstructure and is also unfavorable to toughness. Full article
Show Figures

Figure 1

17 pages, 8254 KiB  
Article
Characteristics of Microstructure and Fracture Toughness According to the Groove Shape of Submerged Arc Welding
by Yong-Taek Shin, Chang-Ju Jung, Seong-Han Bae, Gyubaek An, Myungrak Son and Young-Il Park
Metals 2025, 15(1), 10; https://doi.org/10.3390/met15010010 - 27 Dec 2024
Viewed by 768
Abstract
This study investigates the effects of heat input on the microstructure and fracture toughness of SAW (Submerged Arc Welding) joints with K-groove and X-groove weld preparations using S460NL steel. Microstructural analysis focused on acicular ferrite, grain boundary ferrite, and MA (Martensite–Austenite) constituents to [...] Read more.
This study investigates the effects of heat input on the microstructure and fracture toughness of SAW (Submerged Arc Welding) joints with K-groove and X-groove weld preparations using S460NL steel. Microstructural analysis focused on acicular ferrite, grain boundary ferrite, and MA (Martensite–Austenite) constituents to assess their influence on CTOD (Crack Tip Opening Displacement). The results indicate that the K-groove achieved a higher CTOD value of 0.82 mm compared to 0.13 mm for the X-groove, attributed to differences in microstructural composition and cooling rates. The findings highlight the impact of groove geometry and heat input on weld performance. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

13 pages, 4314 KiB  
Article
Fracture Toughness Behaviour of Nickel Alloy Steel 1.5662
by Nariman Afzali, Natalie Stranghöner and Peter Langenberg
Materials 2024, 17(24), 6117; https://doi.org/10.3390/ma17246117 - 14 Dec 2024
Cited by 1 | Viewed by 846
Abstract
Nickel significantly increases the toughness of steel and makes it ideal for use in applications that require high impact and fracture resistance at low temperatures. These inherent advantages position nickel steel as indispensable material in various domains, with a pronounced presence in stationary [...] Read more.
Nickel significantly increases the toughness of steel and makes it ideal for use in applications that require high impact and fracture resistance at low temperatures. These inherent advantages position nickel steel as indispensable material in various domains, with a pronounced presence in stationary Liquefied Natural Gas (LNG) tanks and in the shipbuilding industry, particularly for tanks in vessels intended for the transport of liquefied ethane and LNG. The presented study focuses on assessing the fracture toughness behaviour of nickel alloy steel 1.5662+QT640 under sub-zero and cryogenic temperatures. The fracture performance of the material was evaluated, specifically emphasizing the impact toughness and fracture toughness characteristics of the material. Moreover, it was discussed if the transferability of the experimental results to the well-known fracture mechanics-based concept of EN 1993-1-10, which relies on the master curve concept, is possible. The results show that the master curve concept is not applicable to the nickel alloy steel 1.5662+QT640 due to its exceptional fracture toughness behaviour at very low temperatures. Full article
(This article belongs to the Special Issue Fatigue Damage and Fracture Mechanics of Materials)
Show Figures

Figure 1

17 pages, 5981 KiB  
Article
Influence of Specimen Width on Crack Propagation Process in Lightly Reinforced Concrete Beams
by Hongwei Wang, Hui Jin, Zhimin Wu, Baoping Zou and Wang Zhang
Materials 2024, 17(22), 5586; https://doi.org/10.3390/ma17225586 - 15 Nov 2024
Cited by 1 | Viewed by 756
Abstract
Models used to study the fracture process of concrete are often considered 2D, ignoring the influence of specimen width. However, during the fracture process in pre-cracked concrete beams, the crack length varies along the thickness direction, especially in reinforced concrete. To study the [...] Read more.
Models used to study the fracture process of concrete are often considered 2D, ignoring the influence of specimen width. However, during the fracture process in pre-cracked concrete beams, the crack length varies along the thickness direction, especially in reinforced concrete. To study the influence of specimen width on reinforced concrete fracture behavior, a 3D numerical method was used to simulate the crack propagation processes of lightly reinforced concrete beams based on Fracture Mechanics. Nonlinear spring elements with different stress-displacement constitutive laws were employed to characterize the softening behavior of concrete and the bond-slip behavior between the steel bars and concrete, respectively. It is assumed that the crack begins to propagate when the maximum stress intensity factor at the crack tip along the beam width reaches the initial fracture toughness of concrete. To verify the validity of the proposed method, the completed crack propagation processes of lightly reinforced concrete three-point bending notched beams were simulated, and the calculated load-crack mouth opening displacement curves showed a reasonable agreement with the experimental data. Moreover, the impact of the 2D reinforced concrete beam model on the crack propagation process was analyzed. The results indicate that at the initial loading stage, the external load P obtained from the 2D model is significantly larger than the result from the presented 3D model. Full article
Show Figures

Figure 1

28 pages, 9202 KiB  
Article
Effect of Coarse Aggregate Type on the Fracture Toughness of Ordinary Concrete
by Grzegorz Ludwik Golewski
Infrastructures 2024, 9(10), 185; https://doi.org/10.3390/infrastructures9100185 - 13 Oct 2024
Cited by 11 | Viewed by 2176
Abstract
This research work aims to compare the strength and fracture mechanics properties of plain concretes, obtained from different coarse aggregates. During the study, mechanical parameters including compressive strength (fcm) and splitting tensile strength (fctm), as well as [...] Read more.
This research work aims to compare the strength and fracture mechanics properties of plain concretes, obtained from different coarse aggregates. During the study, mechanical parameters including compressive strength (fcm) and splitting tensile strength (fctm), as well as fracture parameters involving critical stress intensity factor (KIcS) and critical crack tip opening displacement (CTODc) were evaluated. The effect of the aggregates used on the brittleness of the concretes was also analyzed. For better understanding of the crack initiation and propagation in concretes with different coarse aggregates, a macroscopic failure surfaces examination of the tested beams is also presented. Crushed aggregates covered were basalt (BA), granite (GT), and limestone (LM), and natural peeble gravel aggregate (GL) were used in the concrete mixtures. Fracture toughness tests were performed on an MTS 810 testing machine. Due to the high strength of the rock material, the rough surface of the aggregate grains, and good bonding in the ITZ area between the aggregate and the paste, the concretes with crushed aggregates exhibited high fracture toughness. Both of the analyzed fracture mechanics parameters, i.e.,  KIcS and CTODc, increased significantly in the case of concretes which were manufactured with crushed aggregates. They amounted, in comparison to concrete based on gravel aggregate, to levels ranging from 20% for concrete with limestone aggregate to over 30% for concrete with a granite aggregate, and to as much as over 70% for concrete with basalt aggregate. On the other hand, the concrete with gravel aggregate showed the lowest fracture toughness because of the smooth surface of the aggregate grains and poor bonding between the aggregate and the cement paste. However, the fracture process in each series of concrete was quasi-plastic in the case of gravel concrete, semi-brittle in the case of limestone concrete, and clearly brittle in the case of the concretes based on granite and basalt aggregates. The results obtained help to explain how the coarse aggregate type affects the strength parameters and fracture toughness at bending. Full article
Show Figures

Figure 1

24 pages, 3360 KiB  
Article
Determination of Fracture Mechanic Parameters of Concretes Based on Cement Matrix Enhanced by Fly Ash and Nano-Silica
by Grzegorz Ludwik Golewski
Materials 2024, 17(17), 4230; https://doi.org/10.3390/ma17174230 - 27 Aug 2024
Cited by 59 | Viewed by 2132
Abstract
This study presents test results and deep discussion regarding measurements of the fracture toughness of new concrete composites based on ternary blended cements (TCs). A composition of the most commonly used mineral additive (i.e., fly ash (FA)) in combination with nano-silica (NS) has [...] Read more.
This study presents test results and deep discussion regarding measurements of the fracture toughness of new concrete composites based on ternary blended cements (TCs). A composition of the most commonly used mineral additive (i.e., fly ash (FA)) in combination with nano-silica (NS) has been proposed as a partial replacement of the ordinary Portland cement (OPC) binder. The novelty of this article is related to the fact that ordinary concretes with FA + NS additives are most often used in construction practice, and there is a decided lack of fracture toughness test results concerning these materials. Therefore, in order to fill this gap in the literature, an extensive evaluation of the fracture mechanic parameters of TC was carried out. Four series of concretes were created, one of which was the reference concrete (REF), and the remaining three were TCs. The effect of a constant content of 5% NS and various FA contents, such as 0, 15%, and 25% wt., as a partial replacement of cement was studied. The parameters of the linear and nonlinear fracture mechanics were analyzed in this study (i.e., the critical stress intensity factor (KIcS), critical crack tip opening displacement (CTODc), and critical unit work of failure (JIc)). In addition, the main mechanical parameters (i.e., the compressive strength (fcm) and splitting tensile strength (fctm)) were evaluated. Based on the studies, it was found that the addition of 5% NS without FA increased the strength and fracture parameters of the concrete by approximately 20%. On the other hand, supplementing the composition of the binder with 5% NS in combination with the 15% FA additive caused an increase in all mechanical parameters by approximately another 20%. However, an increase in the FA content in the concrete mix of another 10% caused a smaller increase in all analyzed factors (i.e., by approximately 10%) compared with a composite with the addition of the NS modifier only. In addition, from an ecological point of view, by utilizing fine waste FA particles combined with extremely fine particles of NS to produce ordinary concretes, the demand for OPC can be reduced, thereby lowering CO2 emissions. Hence, the findings of this research hold practical importance for the future application of such materials in the development of green concretes. Full article
Show Figures

Figure 1

25 pages, 15152 KiB  
Article
Effects of Mix Components on Fracture Properties of Seawater Volcanic Scoria Aggregate Concrete
by Yijie Huang, Lina Zheng, Peng Li, Qing Wang and Yukun Zhang
Materials 2024, 17(16), 4100; https://doi.org/10.3390/ma17164100 - 19 Aug 2024
Viewed by 1135
Abstract
The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 [...] Read more.
The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 specimens were fabricated by considering two critical parameters: initial notch-to-depth ratios (a0/h) and concrete mix components (seawater and volcanic scoria coarse aggregate (VSCA)). Changes in fracture parameters, such as the load-crack mouth opening displacement curve (P-CMOD), load-crack tip opening displacement curve (P-CTOD), and fracture energy (Gf), were obtained. The typical double-K fracture parameters (i.e., initial fracture toughness (KICini) and unstable fracture toughness (KICun)) and tension-softening (σ-CTOD) curve were analyzed. The test results showed that the initial cracking load (Pini), Gf, and characteristic length (Lch) of the SVSAC increased with decreasing a0/h. Compared with the ordinary concrete (OC) specimen, the P-CMOD and P-CTOD curves of the specimen changed after using seawater and VSCA. The evolution of the crack propagation length was obtained through the DIC technique, indicating cracks appeared earlier and the fracture properties of specimen decreased after using VSCA. Generally, the KICun and KICini of SVSAC were 36.17% and 8.55% lower than those of the OC specimen, respectively, whereas the effects of a0/h were negligible. The reductions in Pini, Gf, and Lch of the specimen using VSCA were 10.94%, 32.66%, and 60.39%, respectively; however, seawater efficiently decreased the negative effect of VSCA on the fracture before the cracking width approached 0.1 mm. Furthermore, the effects of specimen characteristics on the fracture mechanism were also studied through numerical simulations, indicating the size of the beam changed the fracture toughness. Finally, theoretical models of the double-K fracture toughness and the σ-CTOD relations were proposed, which could prompt their application in marine structures. Full article
Show Figures

Figure 1

13 pages, 6375 KiB  
Article
Experimental Research on the Low-Cycle Fatigue Crack Growth Rate for a Stiffened Plate of EH36 Steel for Use in Ship Structures
by Qin Dong, Geng Xu and Wei Chen
J. Mar. Sci. Eng. 2024, 12(8), 1365; https://doi.org/10.3390/jmse12081365 - 11 Aug 2024
Cited by 2 | Viewed by 1441
Abstract
This paper presents a straightforward approach for determining the low-cycle fatigue (LCF) crack propagation rate in stiffened plate structures containing cracks. The method relies on both the crack tip opening displacement (CTOD) and the accumulative plastic strain, offering valuable insights for ship structure [...] Read more.
This paper presents a straightforward approach for determining the low-cycle fatigue (LCF) crack propagation rate in stiffened plate structures containing cracks. The method relies on both the crack tip opening displacement (CTOD) and the accumulative plastic strain, offering valuable insights for ship structure design and assessing LCF strength. Meanwhile, the LCF crack growth tests for the EH36 steel were conducted on stiffened plates with single-side cracks and central cracks under different loading conditions. The effects of stress amplitude, stress ratio, and stiffener position on the crack growth behavior were examined. Fitting and verifying analyses of the test data were employed to investigate the relationship between CTOD and the crack growth rate of EH36 steel under LCF conditions. The results showed that the proposed CTOD-based prediction method can accurately characterize the LCF crack growth behavior for stiffened plate of EH36 steel for use in ship structures. Full article
(This article belongs to the Special Issue Safety and Reliability of Ship and Ocean Engineering Structures)
Show Figures

Figure 1

17 pages, 3917 KiB  
Article
Experimental Characterization and Phase-Field Damage Modeling of Ductile Fracture in AISI 316L
by Vladimir Dunić, Nenad Gubeljak, Miroslav Živković, Vladimir Milovanović, Darko Jagarinec and Nenad Djordjevic
Metals 2024, 14(7), 787; https://doi.org/10.3390/met14070787 - 5 Jul 2024
Cited by 1 | Viewed by 1943
Abstract
(1) Modeling and characterization of ductile fracture in metals is still a challenging task in the field of computational mechanics. Experimental testing offers specific responses in the form of crack-mouth (CMOD) and crack-tip (CTOD) opening displacement related to applied force or crack growth. [...] Read more.
(1) Modeling and characterization of ductile fracture in metals is still a challenging task in the field of computational mechanics. Experimental testing offers specific responses in the form of crack-mouth (CMOD) and crack-tip (CTOD) opening displacement related to applied force or crack growth. The main aim of this paper is to develop a phase-field-based Finite Element Method (FEM) implementation for modeling of ductile fracture in stainless steel. (2) A Phase-Field Damage Model (PFDM) was coupled with von Mises plasticity and a work-densities-based criterion was employed, with a threshold to propose a new relationship between critical fracture energy and critical total strain value. In addition, the threshold value of potential internal energy—which controls damage evolution—is defined from the critical fracture energy. (3) The material properties of AISI 316L steel are determined by a uniaxial tensile test and the Compact Tension (CT) specimen crack growth test. The PFDM model is validated against the experimental results obtained in the fracture toughness characterization test, with the simulation results being within 8% of the experimental measurements. (4) The novel implementation offers the possibility for better control of the ductile behavior of metallic materials and damage initiation, evolution, and propagation. Full article
(This article belongs to the Special Issue Numerical Modelling of Mechanical Properties for Metallic Materials)
Show Figures

Figure 1

11 pages, 18917 KiB  
Article
Crack-Tip Opening Displacement of Girth Welds in a Lean X70 Pipeline Steel
by Jing Li, Peng Yu, Nitin Saini and Leijun Li
Materials 2024, 17(2), 391; https://doi.org/10.3390/ma17020391 - 12 Jan 2024
Cited by 3 | Viewed by 1611
Abstract
Crack-tip opening displacement (CTOD) tests were conducted on girth welds of two API 5L X70 pipeline steels (pipe A and pipe B) to investigate the influence of base metal composition on the fracture toughness of the joint. CTOD measurements across the weld showed [...] Read more.
Crack-tip opening displacement (CTOD) tests were conducted on girth welds of two API 5L X70 pipeline steels (pipe A and pipe B) to investigate the influence of base metal composition on the fracture toughness of the joint. CTOD measurements across the weld showed that the weld fusion zone had the lowest CTOD values for both pipes, with pipe B having a higher CTOD value than pipe A. Detailed microstructure characterization of the multi-pass weld showed that the fusion zone in both pipes consisted of three distinct zones: the columnar zone, the coarse equiaxed zone, and the fine equiaxed zone. Both the columnar zone and coarse-grained equiaxed zone had acicular ferrite and grain boundary ferrite microstructures, whereas the fine-grained equiaxed zone had a finer ferrite microstructure compared to the other two zones. The main difference between the two pipes was the variation in ferrite grain sizes and the volume fractions of grain boundary ferrite and acicular ferrite. In comparison to pipe B, pipe A, with a higher concentration of Mo, Ni, and Cu in both the base metal and the weld fusion zones, consisted of a higher volume fraction of grain boundary ferrite and a lower volume fraction of acicular ferrite in the columnar and coarse-grained equiaxed zones. The lower concentration of Mo, Ni, and Cu in pipe B likely resulted in the formation of a predominantly acicular ferrite microstructure in the fusion zone, thereby improving the toughness of the weld joint in comparison to pipe A. Full article
(This article belongs to the Special Issue Structures and Weldability of Metallic Materials)
Show Figures

Figure 1

12 pages, 5900 KiB  
Article
Effects of Grain Boundary Misorientation Angle on the Mechanical Behavior of Al Bicrystals
by Wilmer Velilla-Díaz and Habib R. Zambrano
Nanomaterials 2023, 13(23), 3031; https://doi.org/10.3390/nano13233031 - 27 Nov 2023
Cited by 5 | Viewed by 2039
Abstract
This research article explores the effect of grain boundary (GB) misorientation on the mechanical behavior of aluminum (Al) bicrystals by means of molecular dynamics (MD) simulations. The effect of GB misorientation on the mechanical properties, fracture resistance, and crack propagation are evaluated under [...] Read more.
This research article explores the effect of grain boundary (GB) misorientation on the mechanical behavior of aluminum (Al) bicrystals by means of molecular dynamics (MD) simulations. The effect of GB misorientation on the mechanical properties, fracture resistance, and crack propagation are evaluated under monotonic and cyclic load conditions. The J-integral and the crack tip opening displacement (CTOD) are assessed to establish the effect of the GB misorientation angle on the fracture resistance. The simulations reveal that the misorientation angle plays a significant role in the mechanical response of Al bicrystals. The results also evidence a gradual change in the mechanical behavior from brittle to ductile as the misorientation angle is increased. Full article
Show Figures

Figure 1

Back to TopTop