Study on the Mechanism Between Weld Microstructure and Crack Tie Opening Displacement Fracture Toughness of the Steel Catenary Riser
Abstract
:1. Introduction
2. Experimental Section
2.1. Mechanical Properties and Welding Experiments of Base Metal
2.2. Crack Tip Opening Displacement Experiment (CTOD)
2.3. Observation of Microstructure and Crack Growth Path
2.4. Nanoindentation Experiment
3. Experimental Results
3.1. CTOD Experiment Results
3.2. Microstructure of Weld Metal
3.3. Results of Nanoindentation Experiment
4. Discussion
4.1. Influence of Weld Microstructure on Fracture Toughness
4.2. Influence of Weld Microstructure on Crack Propagation Path
5. Conclusions
- The weld microstructure of the steel suspension chain riser is mainly composed of AF, FSP, and GBF. The CTOD experimental results are positively correlated with the proportion of AF, indicating that an increase in the proportion of AF will correspondingly enhance fracture toughness. When the proportion of AF remains relatively stable, the ability of weld metal to resist crack propagation will weaken with the increase in FSP proportion.
- AF, as the main microstructure in weld metal, plays a decisive role in fracture toughness. AF grain boundaries are large-angle grain boundaries with an orientation difference greater than 45°. They have high grain boundary energy and can effectively hinder crack propagation. As the proportion of AF in the weld metal increases and the effective grain size is refined, the grain boundary density of the HAGB can be significantly improved, thereby enhancing the fracture toughness of the weld metal.
- The large difference in hardness between GBF and AF results in unstable mechanical weld metal properties. As a soft phase, the GBF phase interface is prone to becoming a nucleation site for cracks, and the grain boundary energy is low. When cracks pass through GBF, it exhibits less resistance to crack propagation due to intergranular fracture.
- Compared with GBF, FSP has a larger grain size and destroys the interlocking structure of AF in a layered manner. Additionally, there are more substructures within the grain, leading to concentration of internal stress and reducing the fracture toughness of the weld.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Wu, J.; Yan, F.; Zhang, H.; Zhang, D. Defect assessment of steel catenary risers considering welding residual stress. Ocean Eng. 2024, 295, 116765. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, M.; Xue, H.; Tang, W. Nonlinear riser-seabed interaction response among touchdown zone of a steel catenary riser in consideration of vortex-induced vibration. Ocean Eng. 2021, 227, 108891. [Google Scholar] [CrossRef]
- Wang, L.; Song, G.; Su, D.; Zheng, Y.; Chen, H.; Ji, L. Distribution of fracture toughness in heat-affected zone of girth welds and its statistical treatment. Trans. China Weld. Inst. 2023, 44, 27–34. [Google Scholar]
- de Souza, R.F.; Ruggieri, C.; Zhang, Z. CTOD estimation procedure for clad pipe girth welds subjected to bending load. Procedia Struct. Integr. 2016, 2, 2068–2075. [Google Scholar] [CrossRef]
- Tan, L.; Li, S.; Zhao, L.; Wang, L.; Zhao, X. The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel. Nucl. Eng. Technol. 2023, 55, 4112–4119. [Google Scholar] [CrossRef]
- Ju, J.B.; Kim, W.; Jang, J. Variations in DBTT and CTOD within weld heat-affected zone of API X65 pipeline steel. Mater. Sci. Eng. A 2012, 546, 258–262. [Google Scholar] [CrossRef]
- Xu, B.; Yan, Y.B. The overview of assessment technique of CTOD experiment and its application. Chin. J. Mater. Res. 2012, 26, 124–129. [Google Scholar]
- Zhang, F.; Sun, Z.B.; Wang, D.B. Discussion about CTOD properties of submarine pipeline steel. Phys. Exam. Exp. 2012, 26, 124–129. [Google Scholar]
- Zhang, D.H. Research progress on arrest control of pipeline cracking based an Crack Tip Opening Angle. Oil Gas Storage Transp. 2021, 40, 841–847. [Google Scholar]
- Lan, L.; Kong, X.; Qiu, C.; Zhao, D. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints—ScienceDirect. Mater. Des. 2016, 90, 488–498. [Google Scholar] [CrossRef]
- Zhao, H.; Wynne, B.P.; Palmiere, E.J. Conditions for the occurrence of acicular ferrite transformation in HSLA steels. J. Mater. Sci. 2018, 53, 3785–3804. [Google Scholar] [CrossRef]
- Babu, S.S. The mechanism of acicular ferrite in weld deposits. Curr. Opin. Solid State Mater. Sci. 2004, 8, 267–278. [Google Scholar] [CrossRef]
- Seo, J.S.; Kim, H.J.; Ryoo, H.S. Effect of grain boundary ferrite on susceptibility to cold cracking in high-strength weld metal. Met. Mater. Int. 2008, 14, 515–522. [Google Scholar] [CrossRef]
- Li, L.; Fu, J.; Wang, X.; Liu, K.; Niu, X.; Niu, S.; Li, X.; Han, B. Comparative study of microstructure and toughness of automatic welded joints of X70 pipeline steel with no slope and 25 slope. Int. J. Press. Vessel. Pip. 2023, 206, 105054. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, C.; Yan, Z.; Li, H.; Liu, Y. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review. J. Mater. Sci. Technol. 2018, 34, 737–744. [Google Scholar] [CrossRef]
- Qi, X.; Huan, P.; Wang, X.; Shen, X.; Liu, Z.; Di, H. Effect of microstructure homogeneity on the impact fracture mechanism of X100 pipeline steel laser–MAG hybrid welds with an alternating magnetic field. Mater. Sci. Eng. A 2022, 851, 143656. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Yang, W.; Zhang, Y.; Wang, X.; Shang, C. Effect of Mn, Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel. Acta Metall. Sin. 2016, 52, 649–660. [Google Scholar] [CrossRef]
- Qi, X.; Wang, X.; Di, H.; Shen, X.; Liu, Z.; Huan, P.; Chen, L. Effect of Ti content on the inclusions, microstructure and fracture mechanism of X100 pipeline steel laser-MAG hybrid welds. Mater. Sci. Eng. A 2022, 831, 142207. [Google Scholar] [CrossRef]
- Qi, X.; Wang, X.; Di, H.; Shen, X.; Liu, Z.; Huan, P.; Chen, L. Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique. Mater. Charact. 2018, 138, 67–77. [Google Scholar]
- Liu, K.; Wang, D.; Deng, C.; Gong, B.; Wu, S. Improved microstructure heterogeneity and low-temperature fracture toughness of C–Mn weld metal through post weld heat treatment. Mater. Sci. Eng. A 2020, 770, 138541. [Google Scholar] [CrossRef]
- Ribeiro, H.V.; Baptista, C.A.; Lima, M.S.; Torres, M.A.; Marcomini, J.B. Effect of laser welding heat input on fatigue crack growth and CTOD fracture toughness of HSLA steel joints. J. Mater. Res. Technol. 2021, 11, 801–810. [Google Scholar] [CrossRef]
- Lan, L.; Kong, X.; Qiu, C.; Zhao, D. Crack-Tip Opening Displacement of Girth Welds in a Lean X70 Pipeline Steel. Materials 2024, 17, 391. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Dai, L.; Deng, C.; Li, C.; Wang, Y.; Shen, K. Effect of post-weld heat treatment on microstructure and fracture toughness of X80 pipeline steel welded joint. Materials 2022, 15, 6646. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, C.; Dai, L.; Yang, X.; Han, J.; Cui, S.; Yang, Z.; Di, X. Simultaneously enhancing strength and fracture toughness via tailoring the microstructure in X80 girth weld metal. J. Mater. Res. Technol. 2024, 29, 3096–3107. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials—Tensile Tests—Part 1: Test Method at Room Temperature. Standardization Administration of the People’s Republic of China and Standardization Administration of China: Beijing, China, 2021.
- GB T21143-2014; Unified Test Method for Quasi-Static Fracture Toughness of Metal Materials. Standardization Administration of the People’s Republic of China and Standardization Administration of China: Beijing, China, 2015.
- Lee, S.G.; Kim, B.; Kim, W.G.; Um, K.K.; Lee, S. Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels. Sci. Rep. 2019, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, Q.; Cui, S.; Dai, L.; Liu, Q.; Jia, S.; Zhang, H.; Wu, H. Effect of Mo microalloying on impact toughness of X80 pipeline steel in SCGHAZ. J. Mater. Res. Technol. 2024, 28, 2648–2659. [Google Scholar] [CrossRef]
- Hong, R.; Liu, H.-C.; Zhu, X.-D.; Liu, N.-S.; Yin, S.-B.; Ma, Q.-L.; Jia, S.-J. Effect of Cr Element in Gas-Shielded Solid Wire for Oil and Gas Long-Distance Pipeline on Microstructure and Low Temperature Toughness of Weld. Materials 2024, 17, 4704. [Google Scholar] [CrossRef]
- Nedjad, S.H.; Moghaddam, Y.Z.; Vazirabadi, A.M.; Shirazi, H.; Ahmadabadi, M.N. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C–Mn steels. Mater. Sci. Eng. A 2011, 528, 1521–1526. [Google Scholar] [CrossRef]
- Kwon, E.P.; Fujieda, S.; Shinoda, K.; Suzuki, S. Characterization of transformed and deformed microstructures in transformation induced plasticity steels using electron backscattering diffraction. Mater. Sci. Eng. A 2011, 528, 5007–5017. [Google Scholar] [CrossRef]
- Li, B.; Liu, Q.; Jia, S.; Ren, Y.; Wang, B. Fabricating ultrafine grain by advanced thermomechanical processing on low-carbon microalloyed steel. Scr. Mater. 2018, 152, 132–136. [Google Scholar] [CrossRef]
- Zeng, D.P.; An, T.B.; Zhang, S.X.; Dai, H.Y.; Cao, Z.L.; Ma, C.Y. Fracture toughness of weld metal of 440 MPa Grade high-strength steel. Chin. J. Mater. Res. 2024, 38, 151–160. [Google Scholar]
- Zhu, L.; Luo, J.; Wu, G.; Han, J.; Chen, Y.; Song, C. Study on strain response of X80 pipeline steel during weld dent deformation. Eng. Fail. Anal. 2021, 123, 105303. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, B.; Deng, C.; Wang, D. Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties. Mater. Sci. Eng. A 2017, 685, 310–316. [Google Scholar] [CrossRef]
- Lin, S.; Wang, D.; Li, C.; Liu, X.; Di, X.; Jiang, Y. Effect of cyclic plastic deformation on microstructure and mechanical properties of weld metals used for reel-lay pipeline steels. Mater. Sci. Eng. A 2018, 737, 77–84. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Subramanian, S.V.; Misra, R.D.; Shang, C. Structure–property–fracture mechanism correlation in heat-affected zone of X100 ferrite−bainite pipeline steel. Metall. Mater. Trans. E 2015, 2, 1–11. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Nb | Ti | V | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
content Wt% | 0.049 | 0.18 | 1.18 | 0.003 | 0.0016 | 0.17 | 0.2 | 0.09 | 0.1 | 0.024 | 0.014 | 0.023 | 0.03 |
Pipeline | Rt0.2/Mpa | Rm/Mpa | Rt0.2/Rm | A/% |
---|---|---|---|---|
X65 | 493.5 | 602.5 | 0.82 | 26 |
H08MnMoTiB | C | Si | Mn | P | S | Mo | Ti | B |
---|---|---|---|---|---|---|---|---|
Content Wt% | 0.11 | 0.16 | 1.86 | 0.008 | 0.005 | 0.32 | 0.06 | 0.004 |
Number | Critical CTOD Experiment Results | Mean Value | |
---|---|---|---|
1# | 0.222 | 0.252 | 0.273 |
2# | 0.214 | 0.26 | 0.238 |
3# | 0.390 | 0.415 | 0.403 |
4# | 0.465 | 0.474 | 0.469 |
5# | 0.565 | 0.599 | 0.582 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Yin, S.; Li, B.; Jia, S.; Li, Y.; Qin, Y.; Hong, R.; Shuai, K. Study on the Mechanism Between Weld Microstructure and Crack Tie Opening Displacement Fracture Toughness of the Steel Catenary Riser. Materials 2025, 18, 176. https://doi.org/10.3390/ma18010176
Cao Y, Yin S, Li B, Jia S, Li Y, Qin Y, Hong R, Shuai K. Study on the Mechanism Between Weld Microstructure and Crack Tie Opening Displacement Fracture Toughness of the Steel Catenary Riser. Materials. 2025; 18(1):176. https://doi.org/10.3390/ma18010176
Chicago/Turabian StyleCao, Yuxi, Shubiao Yin, Ba Li, Shujun Jia, Yuan Li, Yuqin Qin, Rui Hong, and Kangxin Shuai. 2025. "Study on the Mechanism Between Weld Microstructure and Crack Tie Opening Displacement Fracture Toughness of the Steel Catenary Riser" Materials 18, no. 1: 176. https://doi.org/10.3390/ma18010176
APA StyleCao, Y., Yin, S., Li, B., Jia, S., Li, Y., Qin, Y., Hong, R., & Shuai, K. (2025). Study on the Mechanism Between Weld Microstructure and Crack Tie Opening Displacement Fracture Toughness of the Steel Catenary Riser. Materials, 18(1), 176. https://doi.org/10.3390/ma18010176