Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = crack and void damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15603 KiB  
Article
Scanning Electron Microscopy of Carbon Nanotube–Epoxy Interfaces: Correlating Morphology to Sulfate Exposure
by Sijan Adhikari, Braiden M. Myers, Bryce L. Tuck, Courtney Dawson, Joey R. Cipriano, Jules F. Ahlert, Menziwokuhle Thwala, Mia A. Griffin, Omar Yadak, Osama A. Alfailakawi, Micah S. Ritz, Seth M. Wright, Jeffery Volz and Shreya Vemuganti
J. Compos. Sci. 2025, 9(8), 392; https://doi.org/10.3390/jcs9080392 - 24 Jul 2025
Viewed by 357
Abstract
Epoxy resins are widely used as protective coatings in civil infrastructure, yet sulfate-rich environments accelerate their deterioration. This study evaluates the effectiveness of multi-walled carbon nanotubes (MWCNTs) in enhancing the sulfate resistance of epoxy resins. Neat and MWCNT-reinforced epoxy specimens (0.25 wt.% and [...] Read more.
Epoxy resins are widely used as protective coatings in civil infrastructure, yet sulfate-rich environments accelerate their deterioration. This study evaluates the effectiveness of multi-walled carbon nanotubes (MWCNTs) in enhancing the sulfate resistance of epoxy resins. Neat and MWCNT-reinforced epoxy specimens (0.25 wt.% and 0.5 wt.%) were fabricated, heat cured at 100 °C and exposed to a solution of sulfuric acid and sodium chloride maintaining a pH of less than 3 for 0, 30, and 60 days. Analytical techniques, including scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), revealed distinct degradation patterns: the neat epoxy exhibited puncture damage and extensive salt deposition, while the MWCNT-reinforced specimens showed crack propagation mitigated by nanotube bridging. Heat curing introduced micro-voids that exacerbated sulfate ingress. The salt deposition surged to 200 times for the MWCNT-reinforced specimens compared to the neat ones, whereas crack width was higher in the MWCNT reinforced specimen compared to their neat counterparts, given that crack-bridging was observed. These findings highlight the potential of MWCNTs to improve epoxy durability in sulfate-prone environments, though the optimization of curing conditions and dispersion methods is critical. Full article
Show Figures

Figure 1

19 pages, 2825 KiB  
Article
A Modified Nonlocal Macro–Micro-Scale Damage Model for the Simulation of Hydraulic Fracturing
by Changgen Liu and Xiaozhou Xia
Modelling 2025, 6(3), 58; https://doi.org/10.3390/modelling6030058 - 26 Jun 2025
Viewed by 465
Abstract
The nonlocal macro–meso-scale damage (NMMD) model, implemented in the framework of the finite element method, has been demonstrated to be a promising numerical approach in simulating crack initiation and propagation with reliable efficacy and high accuracy. In this study, the NMMD model was [...] Read more.
The nonlocal macro–meso-scale damage (NMMD) model, implemented in the framework of the finite element method, has been demonstrated to be a promising numerical approach in simulating crack initiation and propagation with reliable efficacy and high accuracy. In this study, the NMMD model was further enhanced by employing an identical degradation mechanism for both the tensile and shear components of shear stiffness, thereby overcoming the limitation of equal degradation in shear and tensile stiffness inherent in the original model. Additionally, a more refined and physically sound seepage evolution function was introduced to characterize the variation in permeability in porous media with geometric damage, leading to the development of an improved NMMD model suitable for simulating coupled seepage–stress problems. The reliability of the enhanced NMMD model was verified by the semi-analytical solutions of the classical KGD problem. Finally, based on the modified NMMD model, the effects of preset fracture spacing and natural voids on hydraulic fracture propagation were investigated. Full article
Show Figures

Figure 1

17 pages, 3009 KiB  
Article
Toughening Effect of Micro-Cracks on Low-Temperature Crack Propagation in Asphalt Concrete
by Jianhuan Du, Xianxing Dai, Qingyang Liu and Zhu Fu
Materials 2025, 18(11), 2429; https://doi.org/10.3390/ma18112429 - 22 May 2025
Viewed by 367
Abstract
Asphalt concrete has a unique low-temperature fracture mechanism due to the complex interaction between macro- and micro-cracks. This study investigated the toughening effect of micro-cracks on the crack propagation behavior of asphalt concrete at low temperatures. The Taylor model was applied to establish [...] Read more.
Asphalt concrete has a unique low-temperature fracture mechanism due to the complex interaction between macro- and micro-cracks. This study investigated the toughening effect of micro-cracks on the crack propagation behavior of asphalt concrete at low temperatures. The Taylor model was applied to establish a modulus damage model of asphalt concrete. In combination with the discrete element method (DEM), a 2D microstructure damage model of asphalt concrete with heterogeneity (aggregate, mortar, and voids) and multi-level (aggregate gradation) characteristics was constructed. A virtual semi-circular bending (SCB) test was performed to reveal the toughening effect of the micro-cracks in terms of macroscopic and microscopic parameters, such as the modulus damage variable, dynamic parameters associated with the main crack propagation, and stress field distribution, laying a foundation for predicting the propagation behavior and path of macroscopic cracks in asphalt concrete. The results showed that (1) the proposed modulus damage model based on the Taylor model produced results that were in good agreement with the numerical simulation (virtual SCB test) results. With an increase in the micro-crack density, the influence of the main cracks on the modulus damage of asphalt concrete gradually reduced, indicating that the micro-cracks exhibited a toughening effect on the main crack propagation; (2) At the meso-scale, the toughening effect of the micro-cracks extended the duration of the crack propagation stage and macro-crack formation stage; that is, the toughening effect of the micro-cracks had a shielding effect on the main crack propagation; (3) The toughening effect could inhibit the shear stress field, contributing to preventing the deterioration in the modulus of asphalt concrete. Full article
(This article belongs to the Special Issue Novel Materials in Highway Engineering)
Show Figures

Figure 1

16 pages, 8572 KiB  
Article
Fracture Behavior and Cracking Mechanism of Rock Materials Containing Fissure-Holes Under Brazilian Splitting Tests
by Hengjie Luan, Kun Liu, Decheng Ge, Wei Han, Yiran Zhou, Lujie Wang and Sunhao Zhang
Appl. Sci. 2025, 15(10), 5592; https://doi.org/10.3390/app15105592 - 16 May 2025
Viewed by 356
Abstract
Fractures and voids are widely distributed in slope rock masses. These defects promote crack initiation and propagation, ultimately leading to rock mass failure. Investigating their damage evolution mechanisms and strength characteristics is of significant importance for slope hazard prevention. A numerical simulation study [...] Read more.
Fractures and voids are widely distributed in slope rock masses. These defects promote crack initiation and propagation, ultimately leading to rock mass failure. Investigating their damage evolution mechanisms and strength characteristics is of significant importance for slope hazard prevention. A numerical simulation study of Brazilian splitting tests on disk samples containing prefabricated holes and fractures was conducted using the Finite Element Method with Cohesive Zone Modeling (FEM-CZM) in ABAQUS by embedding zero-thickness cohesive elements within the finite element model. This 2021 study analyzed the effects of fracture angle and length on tensile strength and crack propagation characteristics. The results revealed that when the fracture angle is small, cracks initiate near the fracture and propagate and intersect radially as the load increases, ultimately leading to specimen failure, with the crack coalescence pattern exhibiting local closure. As the fracture angle increases, the initiation location of the crack shifts. With an increase in fracture length, the crack initiation position may transfer to other parts of the fracture or near the hole, and longer fractures may result in more complex coalescence patterns and local closure phenomena. During the tensile and stable failure stages, the load–displacement curves of samples with different fracture angles and lengths exhibit similar trends. However, the fracture angle has a notable impact on the curve during the shear failure stage, while the fracture length significantly affects the peak value of the curve. Furthermore, as displacement increases, the proportion of tensile failure undergoes a process of rapid decline, slow rise, and then rapid decline again before stabilizing, with the fracture angle having a significant influence on the proportion of tensile failure. Lastly, as the fracture angle and length increase, the number of damaged cohesive elements shows an upward trend. This study provides novel perspectives on the tensile behavior of fractured rock masses through the FEM-CZM approach, contributing to a fundamental understanding of the strength characteristics and crack initiation mechanism of rocks under tensile loading conditions. Full article
Show Figures

Figure 1

20 pages, 12322 KiB  
Article
A Case Study of Pavement Construction Materials for Wet-Freeze Regions: The Application of Waste Glass Aggregate and High-Content Rubber Modified Asphalt
by Kai Xin, Meng Wu, Dongzhao Jin and Zhanping You
Buildings 2025, 15(10), 1637; https://doi.org/10.3390/buildings15101637 - 13 May 2025
Viewed by 441
Abstract
Pavement systems in wet-freeze regions are prone to cracking, rutting, and moisture damage, making it challenging to incorporate recycled materials into asphalt mixtures in a way that enhances sustainability while maintaining performance and constructability. This study investigates and demonstrates the combined benefits of [...] Read more.
Pavement systems in wet-freeze regions are prone to cracking, rutting, and moisture damage, making it challenging to incorporate recycled materials into asphalt mixtures in a way that enhances sustainability while maintaining performance and constructability. This study investigates and demonstrates the combined benefits of using processed waste glass in a leveling course and high-content crumb rubber in a surface course, focusing on both laboratory and full-scale field assessments in a wet-freeze region of northern Michigan. A leveling course containing 10% waste glass aggregate and a surface course using 16% crumb rubber (by binder weight) modified asphalt were designed with low air voids (3.0–3.5%) to promote thicker asphalt binder films for improved crack resistance. Laboratory results demonstrated that the combination of a 10% glass aggregate leveling course and a 16% rubber-modified surface course significantly enhanced low-temperature fracture energy while maintaining robust rut resistance and moisture durability. Full-scale construction in northern Michigan corroborated these findings; field cores from rubber and glass sections surpassed performance thresholds for rutting, cracking, and noise reduction. This study demonstrates that integrating crumb rubber and waste glass into asphalt pavements offers both environmental and performance benefits. The approach presents a scalable solution for enhancing pavement durability in wet-freeze regions. Full article
Show Figures

Figure 1

19 pages, 10107 KiB  
Article
Understanding the Deformation and Fracture Behavior of β−HMX Crystal and Its Polymer−Bonded Explosives with Void Defects on the Atomic Scale
by Longjie Huang, Yan Li, Yuanjing Wang, Rui Liu, Pengwan Chen and Yu Xia
Crystals 2025, 15(4), 376; https://doi.org/10.3390/cryst15040376 - 18 Apr 2025
Viewed by 520
Abstract
The effect of the void defect on β−HMX−based polymer−bonded explosives (PBXs) for a comprehensive understanding of the deformation and fracture process is lacking. In this paper, the atomic scale model of the β−HMX crystal and its PBX is built using LAMMPS software to [...] Read more.
The effect of the void defect on β−HMX−based polymer−bonded explosives (PBXs) for a comprehensive understanding of the deformation and fracture process is lacking. In this paper, the atomic scale model of the β−HMX crystal and its PBX is built using LAMMPS software to investigate the mechanical response under dynamic tensile conditions. The void defect considers both regular and stochastic distributions. The simulation concerns the deformation and fracture process with respect to the void size, void number, void spacing, and the stochastic characteristics. The tensile stress–strain relationship is obtained, and the fracture morphology is simulated well. The crack propagation is discussed in detail. Further, the fracture mode is compared between the single crystal and PBX. In addition, the characteristic defect parameter combines both the damage area and the void spacing, and it is used to predict the crack occurrence and propagation for the single crystal. However, for PBX, the interface between the crystal and binder determines the fracture process instead of the characteristic defect parameter. Full article
Show Figures

Figure 1

18 pages, 13237 KiB  
Article
Effect of Film-Cooling-Hole Inclination on the Creep Performance of IN-738 Specimens
by Hao Yang, Qin Zhang, Jinke Lv, Han Li, Tiange Chu, Shaoyang Chen and Ke Wang
Materials 2025, 18(8), 1737; https://doi.org/10.3390/ma18081737 - 10 Apr 2025
Cited by 1 | Viewed by 405
Abstract
To investigate the effect of film-cooling-hole inclination on the creep performance of nickel-based superalloy IN-738 specimens, this study designed samples with film-cooling holes at four inclination angles: 0°, 30°, 45°, and 60°. High-temperature creep tests were conducted, and the fracture morphologies of the [...] Read more.
To investigate the effect of film-cooling-hole inclination on the creep performance of nickel-based superalloy IN-738 specimens, this study designed samples with film-cooling holes at four inclination angles: 0°, 30°, 45°, and 60°. High-temperature creep tests were conducted, and the fracture morphologies of the failed specimens were analyzed using scanning electron microscopy. The results indicate that under conditions of 800 °C and 350 MPa, the inclination angle of the film-cooling holes significantly influences the creep performance of the specimens, with creep lifetimes ranking in descending order as 0° > 60° > 45° > 30°. A fracture analysis revealed that creep failure in specimens with film-cooling holes primarily resulted from stress concentration at the hole edges, where cracks and voids frequently initiated. The creep fractures exhibited dimple-type failure characteristics localized around the film-cooling holes due to stress concentration. Simulations based on the K-R damage model were performed for the four different inclination angles, confirming the existence of stress concentration around the film-cooling holes. The numerical analysis results closely matched the experimental data. Furthermore, the node stress method was used to predict the creep rupture life of specimens with film-cooling holes, demonstrating high accuracy in life prediction. Full article
Show Figures

Figure 1

18 pages, 8926 KiB  
Article
Research on Damage Detection Methods for Concrete Beams Based on Ground Penetrating Radar and Convolutional Neural Networks
by Ning Liu, Ya Ge, Xin Bai, Zi Zhang, Yuhao Shangguan and Yan Li
Appl. Sci. 2025, 15(4), 1882; https://doi.org/10.3390/app15041882 - 12 Feb 2025
Cited by 3 | Viewed by 936
Abstract
Ground penetrating radar (GPR) is a mature and important research method in the field of structural non-destructive testing. However, when the detection target scale is small and the amount of data collected is limited, it poses a serious challenge for this research method. [...] Read more.
Ground penetrating radar (GPR) is a mature and important research method in the field of structural non-destructive testing. However, when the detection target scale is small and the amount of data collected is limited, it poses a serious challenge for this research method. In order to verify the applicability of typical one-dimensional radar signals combined with convolutional neural networks (CNN) in the non-destructive testing of concrete structures, this study created concrete specimens with embedded defects (voids, non-dense solids, and cracks) commonly found in concrete structures in a laboratory setting. High-frequency GPR equipment is used for data acquisition, A-scan data corresponding to different defects is extracted as a training set, and appropriate labeling is carried out. The extracted original radar signals were taken as the input of the CNN model. At the same time, in order to improve the sensitivity of the CNN models to specific damage types, the spectrums of A-scan are also used as part of the training datasets of the CNN models. In this paper, two CNN models with different dimensions are used to train the datasets and evaluate the classification results; one is the traditional one-dimensional CNN model, and the other is the classical two-dimensional CNN architecture AlexNet. In addition, the finite difference time domain (FDTD) model of three-dimensional complex media is established by gprMax, and the propagation characteristics of GPR in concrete media are simulated. The results of applying this method to both simulated and experimental data show that combining the A-scan data of ground penetrating radar and their spectrums as input with the CNN model can effectively identify different types of damage and defects inside the concrete structure. Compared with the one-dimensional CNN model, AlexNet has obvious advantages in extracting complex signal features and processing high-dimensional data. The feasibility of this method in the research field of damage detection of concrete structures has been verified. Full article
(This article belongs to the Special Issue Ground Penetrating Radar: Data, Imaging, and Signal Analysis)
Show Figures

Figure 1

13 pages, 6245 KiB  
Article
A Study of the Creep-Fatigue Damage Mechanism of a P92 Welded Joint Using Nanoindentation Characterization
by Zhangmin Jin, Zhihui Cai, Xuecheng Gu, Zhiqiang Wang, Yiwen Han, Ting Yu, Yuxuan Song, Zengliang Gao and Zhongrui Zheng
Metals 2025, 15(1), 53; https://doi.org/10.3390/met15010053 - 9 Jan 2025
Cited by 1 | Viewed by 1027
Abstract
In fossil fuel and nuclear power plants, welded joints continuously experience creep-fatigue loading, which can result in premature cracking during the in-service term. To study the creep-fatigue interactive (CFI) behavior, the CFI test of P92 steel was performed with different strain rates at [...] Read more.
In fossil fuel and nuclear power plants, welded joints continuously experience creep-fatigue loading, which can result in premature cracking during the in-service term. To study the creep-fatigue interactive (CFI) behavior, the CFI test of P92 steel was performed with different strain rates at 823 K. Results indicate that the short cycle life is measured with the increasing strain rate. Relying on the scanning electron microscope, the fracture mechanism of P92 steel gradually changes from fatigue-dominating to creep-fatigue interactive damage with the increasing strain rate. The hardness (H), elastic modulus (E) and creep deformation were then measured by nanoindentation, and the strain rate sensitivity (m) was estimated. The relation between the degenerated mechanical properties and microstructural evaluations, i.e., enhanced grain size and nucleation of creep voids, was established, and the damage mechanism was discussed. Full article
Show Figures

Figure 1

19 pages, 18132 KiB  
Article
Notch Fatigue Damage Evolution Mechanism of TC21 Alloy with Multilevel Lamellar Microstructures
by Xiaosong Zhou, Xiang Li, Chaowen Huang, Quan Wu and Fei Zhao
Metals 2025, 15(1), 18; https://doi.org/10.3390/met15010018 - 29 Dec 2024
Viewed by 670
Abstract
This study aims to explore the effect of microstructural parameters on the notch fatigue damage behavior of the TC21 alloy. Different levels of lamellar microstructures were achieved through distinct aging temperatures of 550 °C, 600 °C, and 650 °C. The findings reveal that [...] Read more.
This study aims to explore the effect of microstructural parameters on the notch fatigue damage behavior of the TC21 alloy. Different levels of lamellar microstructures were achieved through distinct aging temperatures of 550 °C, 600 °C, and 650 °C. The findings reveal that increasing aging temperature primarily contributes to the augmentation of α colony (αc) thickness, grain boundaries α phase (GBα) thickness, and α fine (αfine) size alongside a reduction in α lath (αlath) thickness and αfine content. The notch alters stress distribution and relaxation effects at the root, enhancing notched tensile strength while weakening plasticity. Moreover, the increased thickness of GBα emerges as a critical factor leading to the increase area of intergranular cleavage fracture. It is noteworthy that more thickness αlath and smaller αfine facilitate deformation coordination and enhance dislocation accumulation at the interface, leading to a higher propensity for micro-voids and micro-cracks to propagate along the interface. Conversely, at elevated aging temperatures, thinner αlath and larger αfine are more susceptible to fracture, resulting in the liberation of dislocations at the interface. The reduction in αlath thickness is crucial for triggering the initiation of multi-system dislocations at the interface, which promotes the development of persistent slip bands (PSBs) and dislocation nets within αlath. This phenomenon induces inhomogeneous plastic deformation and localized hardening, fostering the formation of micro-voids and micro-cracks. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

17 pages, 9960 KiB  
Article
Simulation and Assessment of Thermal-Stress Analysis of Welding Materials in IGBT
by Yang Yang, Jibing Chen, Bowen Liu and Yiping Wu
Micromachines 2024, 15(12), 1519; https://doi.org/10.3390/mi15121519 - 20 Dec 2024
Viewed by 1108
Abstract
Insulated gate bipolar transistors (IGBTs), as an important power semiconductor device, are susceptible to thermal stress, thermal fatigue, and mechanical stresses under high-voltage, high-current, and high-power conditions. Elevated heat dissipation within the module leads to fluctuating rises in temperature that accelerate its own [...] Read more.
Insulated gate bipolar transistors (IGBTs), as an important power semiconductor device, are susceptible to thermal stress, thermal fatigue, and mechanical stresses under high-voltage, high-current, and high-power conditions. Elevated heat dissipation within the module leads to fluctuating rises in temperature that accelerate its own degradation and failure, ultimately causing damage to the module as a whole and posing a threat to operator safety. Through ANSYS Workbench simulation analysis, it is possible to accurately predict the temperature distribution, equivalent stress, and equivalent strain of solder materials under actual working conditions, thus revealing the changing laws of the heat–mechanical interaction in solder materials. Simulation analysis results show that, under steady-state operating conditions, the highest point of the IGBT module’s overall junction temperature occurs in the center of the chip. Nanogold exhibited the best performance in terms of temperature and equivalent stress-strain among the five solders studied in this paper; defects near the edges caused greater harm to the module compared to those closer to the solder layer’s center. In terms of stress, defects located near the edge corners produced larger strains. Crazing damage in joints allows for a faster transfer of heat sources away from the center; in terms of stress, crazing has fewer detrimental effects on the integrity of the module as compared to through cracks. Simulation analysis can model the interaction of heat and equipment under realistic work conditions, comparing and evaluating different types of solder materials to select the most suitable solder material for product design and material selection. This aids in enhancing design precision and reliability. Full article
Show Figures

Figure 1

19 pages, 6344 KiB  
Article
Influence of Basalt Fiber Morphology on the Properties of Asphalt Binders and Mixtures
by Chenhao Cai, Keke Lou, Fuxin Qian and Peng Xiao
Materials 2024, 17(21), 5358; https://doi.org/10.3390/ma17215358 - 1 Nov 2024
Cited by 4 | Viewed by 1262
Abstract
Basalt fiber (BF) has been proven to be an effective additive for improving the properties of asphalt mixtures. However, the influence of basalt fiber morphology on the properties of asphalt binders and mixtures remains inadequately explored. In this study, chopped basalt fiber (CBF) [...] Read more.
Basalt fiber (BF) has been proven to be an effective additive for improving the properties of asphalt mixtures. However, the influence of basalt fiber morphology on the properties of asphalt binders and mixtures remains inadequately explored. In this study, chopped basalt fiber (CBF) and flocculent basalt fiber (FBF) were selected to make samples for testing the influence of the two types of basalt fibers on asphalt materials. Fluorescence microscopy was used to obtain the dispersion of fiber in asphalt binders. Then, a temperature sweep test and a multiple stress creep recovery (MSCR) test were carried out to appraise the rheological characteristics of the binder. Moreover, the performance of the fiber-reinforced asphalt mixture was evaluated by a wheel tracking test, a uniaxial penetration test, an indirect tensile asphalt cracking test (IDEAL-CT), a low-temperature bending test, a water-immersion stability test, and a freeze–thaw splitting test. The results indicate that the rheological behavior of asphalt binders could be enhanced by both types of fibers. Notably, FBFs exhibit a larger contact area with asphalt mortar compared to CBFs, resulting in improved resistance to deformation under identical shear conditions. Meanwhile, the performance of the asphalt mixture underwent different levels of enhancement with the incorporation of two morphologies of basalt fiber. Specifically, as for the road property indices with FBFs, the enhancement extent of DS in the wheel tracking test, that of RT in the uniaxial penetration test, that of the CTindex in the IDEAL-CT test, and that of εB in the low-temperature trabecular bending test was 3.1%, 6.8%, 15.1%, and 6.5%, respectively, when compared to the CBF-reinforced mixtures. Compared with CBFs, FBFs significantly enhanced the elasticity and deformation recovery ability of asphalt mixtures, demonstrating greater resistance to high-temperature deformation and a more pronounced effect in delaying the onset of middle- and low-temperature cracking. Additionally, the volume of the air void for asphalt mixtures containing FBFs was lower than that containing CBFs, thereby reducing the likelihood of water damage due to excessive voids. Consequently, the moisture susceptibility enhancement of CBFs to asphalt mixture was not obvious, while FBFs could improve moisture susceptibility by more than 20%. Overall, the impact of basalt fibers with different morphologies on the properties of asphalt pavement materials varies significantly, and the research results may provide reference values for the choice of engineering fibers. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

19 pages, 8216 KiB  
Article
Damage Evolution Mechanism of Railway Wagon Bogie Adapter 1035 Steel and Damage Parameter Calibration Based on Gursone–Tvergaarde–Needleman Model
by Jiachuan Yin, Xiaomin Huang, Guangzhi Ma, Changzhe Song, Xuefeng Tang and Hongchao Ji
Materials 2024, 17(20), 5070; https://doi.org/10.3390/ma17205070 - 17 Oct 2024
Viewed by 1083
Abstract
As a critical component of a train, the railway wagon bogie adapter has higher quality requirements. During the forging process, external loads can induce voids, cracks, and other defects in the forging, thereby reducing its service life. Hence, studying the damage behavior of [...] Read more.
As a critical component of a train, the railway wagon bogie adapter has higher quality requirements. During the forging process, external loads can induce voids, cracks, and other defects in the forging, thereby reducing its service life. Hence, studying the damage behavior of the forging material, specifically AISI 1035 steel, becomes crucial. This study involved obtaining stress–strain curves for AISI 1035 steel through uniaxial tensile tests at temperatures of 900 °C, 1000 °C, and 1100 °C, with strain rates of 0.1 s−1, 1 s−1, and 10 s−1. Subsequently, SEM was used to observe samples at various deformation stages. The damage parameters, q1,  q2 and q3 in the GTN model “a computational model used to analyze and simulate material damage which can effectively capture the damage behavior of materials under different loading conditions” were then calibrated using the Ramberg–Osgood model and stress–strain curve fitting. Image Pro Plus software v11.1 quantified the sample porosity as f0, fn, fc and fF. A finite element model was established to simulate the tensile behavior of the AISI 1035 steel samples. By comparing the damage parameters of f0, fn, fc and fF obtained by the finite element method and experimental method, the validity of the damage parameters obtained by the finite element inverse method could be verified. Full article
(This article belongs to the Special Issue Research on Metal Cutting, Casting, Forming, and Heat Treatment)
Show Figures

Figure 1

25 pages, 17584 KiB  
Article
Research on Disaster Prevention and Control Technology for Directional Hydraulic Fracturing and Roof Plate Unloading
by Dong Liu, Jiayue Deng, Tao Yang, Jie Zhang, Haifei Lin, Hui Liu, Jiarui Sun and Yiming Zhang
Appl. Sci. 2024, 14(19), 8733; https://doi.org/10.3390/app14198733 - 27 Sep 2024
Cited by 1 | Viewed by 709
Abstract
In coal seam groups where the spacing between the upper and lower seams is small, the lower seam working face is significantly influenced by residual coal pillars from the upper seam and the void spaces created during mining. This presents considerable challenges for [...] Read more.
In coal seam groups where the spacing between the upper and lower seams is small, the lower seam working face is significantly influenced by residual coal pillars from the upper seam and the void spaces created during mining. This presents considerable challenges for underground mining safety. Through field investigations, the layout of the coal seam quarry above the working face of the 3−1 coal seam in Yanghuopan Mine was examined, along with the distribution of the residual coal pillars. This allowed for the identification of the interlayer rock strata characteristics. Subsequently, we analyzed the mechanism of directional hydraulic fracturing and decompression to determine the key parameters of the 3−1 coal seam. Using the Rock Fracture Process Analysis 3D (RFPA 3D) numerical simulation, we evaluated the effects of various factors on the initiation and propagation of hydraulic fracturing-induced cracks, formulated the evolution law of these fractures, and incorporated the damage variables into the analysis. Additionally, we assessed the influence of different parameters on crack initiation and extension during hydraulic fracturing, using RFPA 3D simulations to derive the evolution law governing directional hydraulic fractures. This allowed us to define the hydraulic fracturing parameters for the 3−1 interbedded rock layers by integrating the process parameter calculations with the damage variables. Based on these findings, an on-site implementation plan was developed and executed, followed by a comprehensive evaluation of the construction results. The study concludes that directional hydraulic fracturing and decompression effectively contribute to the prevention and control of roof-related disasters in the mining of lower coal seams where seam spacing is minimal. This research offers valuable theoretical insights and practical reference for disaster prevention and control in similar geological conditions. Full article
Show Figures

Figure 1

15 pages, 23687 KiB  
Article
Evaluation of Shear-Punched Surface Layer Damage in Ultrahigh-Strength TRIP-Aided Steels with Bainitic Ferrite and/or Martensite Matrix Structure
by Koh-ichi Sugimoto, Shoya Shioiri, Junya Kobayashi and Tomohiko Hojo
Metals 2024, 14(9), 1034; https://doi.org/10.3390/met14091034 - 11 Sep 2024
Cited by 1 | Viewed by 1240
Abstract
The damage to the shear-punched surface layers such as strain-hardening, strain-induced martensite transformation, and micro-void initiation behaviors was evaluated in the third-generation low-carbon advanced ultrahigh-strength TRIP-aided bainitic ferrite (TBF), bainitic ferrite–martensite (TBM), and martensite (TM) steels. In addition, the surface layer damage was [...] Read more.
The damage to the shear-punched surface layers such as strain-hardening, strain-induced martensite transformation, and micro-void initiation behaviors was evaluated in the third-generation low-carbon advanced ultrahigh-strength TRIP-aided bainitic ferrite (TBF), bainitic ferrite–martensite (TBM), and martensite (TM) steels. In addition, the surface layer damage was related to (1) the mean normal stress generated during shear-punching and (2) microstructural properties such as the matrix structure, retained austenite characteristics, and second-phase properties. The shear-punched surface layer damage was produced under the mean normal stress between zero and negative in all the steels. The TBM and TM steels achieved relatively small surface layer damage. The small surface layer damage resulted in excellent cold stretch-flangeability, with a high crack-propagation/void-connection resistance on hole expansion. Full article
Show Figures

Figure 1

Back to TopTop