Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = cow dung fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8763 KiB  
Article
Effect of Modified Cow Dung Fibers on Strength and Autogenous Shrinkage of Alkali-Activated Slag Mortar
by Kang Li, Zhengxian Yang, Xueyuan Yan, Liying Xu, Bruno Briseghella and Giuseppe Carlo Marano
Materials 2023, 16(20), 6808; https://doi.org/10.3390/ma16206808 - 22 Oct 2023
Cited by 2 | Viewed by 1662
Abstract
Alkali-activated slag (AAS) presents a promising alternative to ordinary Portland cement due to its cost effectiveness, environmental friendliness, and satisfactory durability characteristics. In this paper, cow dung waste was recycled as a renewable natural cellulose fiber, modified with alkali, and then added to [...] Read more.
Alkali-activated slag (AAS) presents a promising alternative to ordinary Portland cement due to its cost effectiveness, environmental friendliness, and satisfactory durability characteristics. In this paper, cow dung waste was recycled as a renewable natural cellulose fiber, modified with alkali, and then added to AAS mortar. The physico-chemical characteristics of raw and modified cow dung fibers were determined through Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Scanning electron microscope (SEM). Investigations were conducted on the dispersion of cow dung fibers in the AAS matrix, as well as the flowability, strength, and autogenous shrinkage of AAS mortar with varying cow dung fiber contents. The results indicated that modified fiber has higher crystallinity and surface roughness. The ultrasonic method showed superior effectiveness compared to pre-mixing and after-mixing methods. Compared with raw cow dung fibers, modified fibers led to an increase of 11.3% and 36.3% of the 28 d flexural strength and compressive strength of the AAS mortar, respectively. The modified cow dung fibers had a more significant inhibition on autogenous shrinkage, and the addition of 2 wt% cow dung fibers reduced the 7 d autogenous shrinkage of the AAS paste by 52.8% due to the “internal curing effect.” This study provides an alternative value-added recycling option for cow dung fibers as a potential environmentally friendly and sustainable reinforcing raw material for cementitious materials, which can be used to develop low autogenous shrinkage green composites. Full article
Show Figures

Figure 1

15 pages, 4324 KiB  
Article
Forming and Degradation Mechanism of Bowl Seedling Tray Based on Straw Lignin Conversion
by Liqiang Qi, Bo Zhang, Yongcai Ma and Wei Zhang
Agronomy 2023, 13(2), 453; https://doi.org/10.3390/agronomy13020453 - 2 Feb 2023
Cited by 3 | Viewed by 2287
Abstract
In response to the problems of low straw utilization efficiency and poor returning effect in Northeast China, this paper takes rice straw containing cow dung as the experimental material, and according to the characteristics of lignin glass transformation of the material, proposes a [...] Read more.
In response to the problems of low straw utilization efficiency and poor returning effect in Northeast China, this paper takes rice straw containing cow dung as the experimental material, and according to the characteristics of lignin glass transformation of the material, proposes a new method to prepare biomass seedling trays. The seedling trays prepared by this method can meet the needs of corn seedling cultivation and transplantation. To study the molding mechanism, scanning electron microscopy and a universal testing machine were used to compare the changes in the internal structure and mechanical properties of the regularly- and hot-compressed seedling trays before and after seedling raising. The results show that the material with water content of 23% has the best hot-pressing effect. The forming mechanism is: that the strength of the molded seedling tray resulted from the mechanical setting force of the multilayered stem fibers with a mosaic structure within the seedling tray. The adhesion and wrapping by lignin prevented water penetration from damaging the multilayered stem fibers and slightly improved their strength. The seedling tray made of straw and manure was completely degraded over 40 days, and the straw degradation rate was improved. This method can increase the overall quality and benefits of straw, providing a foundational reference for high-quality and high-efficiency straw utilization. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 3767 KiB  
Article
Characteristics and Functional Application of Cellulose Fibers Extracted from Cow Dung Wastes
by Xiangjun Yang, Lu Li, Wuyun Zhao, Mengyang Wang, Wanxia Yang, Yuhang Tian, Ruizhe Zheng, Shuhang Deng, Yongsong Mu and Xiaodong Zhu
Materials 2023, 16(2), 648; https://doi.org/10.3390/ma16020648 - 9 Jan 2023
Cited by 19 | Viewed by 6131
Abstract
The widespread use of petroleum-based products has led to increasing environmental and ecological problems, while the extraction and application of various natural cellulose fibers have received increasing attention. This research focuses on the extraction of cellulose fibers from cow dung using different treatments: [...] Read more.
The widespread use of petroleum-based products has led to increasing environmental and ecological problems, while the extraction and application of various natural cellulose fibers have received increasing attention. This research focuses on the extraction of cellulose fibers from cow dung using different treatments: hot water, hydrogen peroxide (H2O2), sodium hydroxide (NaOH) and potassium hydroxide (KOH) boilings, as well as a selection of the best quality cow dung fibers for papermaking with quality control. The study’s objective is to find a sustainable method to extract as much material as possible from renewable biomass feedstock. The results show that the best extraction rate is obtained by KOH boiling with 42% cellulose fibers extracted. Corresponding handmade paper has a burst index of 2.48 KPam2/g, a tear index of 4.83 mNm2/g and a tensile index of 26.72 Nm/g. This project expands the sources of natural cellulose fibers to an eco-friendly and sustainable one and opens up new applications for cow dung. Full article
(This article belongs to the Topic Advances in Biomaterials)
Show Figures

Figure 1

17 pages, 15422 KiB  
Article
Characterization of the Mechanical and Morphological Properties of Cow Dung Fiber-Reinforced Polymer Composites: A Comparative Study with Corn Stalk Fiber Composites and Sisal Fiber Composites
by Siyang Wu, Mingzhuo Guo, Jiale Zhao, Qian Wu, Jian Zhuang and Xinming Jiang
Polymers 2022, 14(22), 5041; https://doi.org/10.3390/polym14225041 - 21 Nov 2022
Cited by 14 | Viewed by 4107
Abstract
Natural fibers and their composites have attracted much attention due to the growing energy crisis and environmental awareness. In this work, a natural lignocellulosic fiber was extracted from cow dung waste and its potential use as reinforcing material in resin-based polymer composites was [...] Read more.
Natural fibers and their composites have attracted much attention due to the growing energy crisis and environmental awareness. In this work, a natural lignocellulosic fiber was extracted from cow dung waste and its potential use as reinforcing material in resin-based polymer composites was evaluated. For this purpose, cow dung fiber-reinforced composites (CDFC) were fabricated, and their mechanical and morphological properties were systematically investigated and compared with corn stalk fiber composites (CSFC) and sisal fiber composites (SFC). The results showed that the addition of cow dung fibers reduced the density of the polymer composites, increased the water absorption, and enhanced the impact strength and shear strength. The highest impact and shear strengths were obtained at 6 wt.% and 9 wt.% of fiber loading, respectively, which increased by 23.8% and 34.6% compared to the composite without the fibers. Further comparisons revealed that at the same fiber addition level, the CDFC exhibited better mechanical properties than the CSFC; notably, the CDFC-3 (adding 3 wt.% of fiber loading) had an impact strength closer to the SFC-3. Furthermore, an SEM analysis suggested that the cow dung fibers exhibited a rough and crinkly surface with more node structures, and presented good interfacial bonding with the composite matrix. This work revealed that cow dung fibers are a promising candidate as reinforcement for resin-based polymer composites, which promotes an alternative application for cow dung waste resources in the automotive components field. Full article
(This article belongs to the Special Issue Fiber-Reinforced Composite)
Show Figures

Figure 1

16 pages, 4532 KiB  
Article
Characterization and Morphology of Natural Dung Polymer for Potential Industrial Application as Bio-Based Fillers
by Vinayak Fasake and Kavya Dashora
Polymers 2020, 12(12), 3030; https://doi.org/10.3390/polym12123030 - 17 Dec 2020
Cited by 23 | Viewed by 3984
Abstract
The modern-day paper industry is highly capital-intensive industries in the core sector. Though there are several uses of paper for currency, packaging, education, information, communication, trade and hygiene, the flip side of this industry is the impact on the forest resources and other [...] Read more.
The modern-day paper industry is highly capital-intensive industries in the core sector. Though there are several uses of paper for currency, packaging, education, information, communication, trade and hygiene, the flip side of this industry is the impact on the forest resources and other ecosystems which leads to increasing pollution in water and air, influencing several local communities. In the present paper, the authors have tried to explore potential and alternate source of industrial pulp through ruminant animal dung, which is widely available as a rural resource in India. Three types of undigested animal dung fibers from Indigenous cow (IDF), Jersey cow (JDF), and Buffalo (BDF) were taken. Wheat straw (WS) was the main diet of all animals. The cellulose, hemicellulose and lignin content for all animal dung samples were found in a range of (29–31.50%), (21–23.50%), and (11–13%), respectively. The abundant holocellulose and low lignin contents are suitable for handmade pulp and paper. Surface characteristics of fodder (WS) and all dung fibers have been investigated using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and SEM-Energy dispersive X-ray spectroscopy (SEM-EDX). To increase paper production without damaging forest cover, it is essential to explore unconventional natural resources, such as dung fiber, which have the huge potential to produce pulp and paper, reinforcement components, etc. Full article
(This article belongs to the Special Issue Biodegradable and Sustainable Polymers)
Show Figures

Figure 1

Back to TopTop