Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = coupled seepage-deformation analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11001 KiB  
Article
Temperature Prediction Model for Horizontal Shale Gas Wells Considering Stress Sensitivity
by Jianli Liu, Fangqing Wen, Hu Han, Daicheng Peng, Qiao Deng and Dong Yang
Processes 2025, 13(6), 1896; https://doi.org/10.3390/pr13061896 - 15 Jun 2025
Viewed by 470
Abstract
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore [...] Read more.
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore temperature. The model integrates the effects of heat transfer in the temperature field, gas transport in the seepage field, and the mechanical deformation of shale induced by the stress field. The coupled model is solved using the finite difference method. The model was validated against field data from shale gas production, and sensitivity analyses were conducted on seven key parameters related to the stress field. The findings indicate that the stress field exerts an influence on both the wellbore temperature distribution and the total gas production. Neglecting the stress field effects may lead to an overestimation of shale gas production by up to 12.9%. Further analysis reveals that reservoir porosity and Langmuir volume are positively correlated with wellbore temperature, while permeability, Young’s modulus, Langmuir pressure, the coefficient of thermal expansion, and adsorption strain are negatively correlated with wellbore temperature. Full article
Show Figures

Figure 1

19 pages, 8589 KiB  
Article
Study on the Deformation Mechanism of Shallow Soil Landslides Under the Coupled Effects of Crack Development, Road Loading, and Rainfall
by Peiyan Fei, Qinglin Yi, Maolin Deng, Biao Wang, Yuhang Song and Longchuan Liu
Water 2025, 17(8), 1196; https://doi.org/10.3390/w17081196 - 16 Apr 2025
Viewed by 549
Abstract
This study investigated the deformation characteristics and mechanisms of the Baiyansizu landslide under the coupled effects of crack development, rainfall infiltration, and road loading. Numerical simulations were performed using GeoStudio software (Version 2018; Seequent, 2018) to analyze geological factors and external disturbances affecting [...] Read more.
This study investigated the deformation characteristics and mechanisms of the Baiyansizu landslide under the coupled effects of crack development, rainfall infiltration, and road loading. Numerical simulations were performed using GeoStudio software (Version 2018; Seequent, 2018) to analyze geological factors and external disturbances affecting landslide deformation and seepage dynamics. Four additional landslides (Tanjiawan, Bazimen, Tudiling, and Chengnan) were selected as comparative cases to investigate differences in deformation characteristics and mechanisms across these cases. The results demonstrate that rear-edge deformation of the Baiyansizu landslide was predominantly governed by rainfall patterns, with effective rainfall exhibiting a dual regulatory mechanism: long-term rainfall reduced shear strength through sustained infiltration-induced progressive creep, whereas short-term rainstorms generated step-like deformation via transient pore water pressure amplification. GeoStudio simulations further revealed multi-physics coupling mechanisms and nonlinear stability evolution controls. These findings highlight that rear-edge fissures substantially amplify rainfall infiltration efficiency, thereby establishing these features as the predominant deformation determinant. Road loading was observed to accelerate shallow landslide deformation, with stability coefficient threshold values triggering accelerated creep phases when thresholds were exceeded. Through comparative analysis of five typical landslide cases, it was demonstrated that interactions between geological factors and external disturbances resulted in distinct deformation characteristics and mechanisms. Variations in landslide thickness, crack evolution, road loading magnitudes, and rainfall infiltration characteristics were identified as critical factors influencing deformation patterns. This research provides significant empirical insights and theoretical frameworks for landslide monitoring and early warning system development. Full article
Show Figures

Figure 1

25 pages, 18928 KiB  
Article
Mechanical, Seepage, and Energy Evolution Properties of Multi-Shaped Fractured Sandstone Under Hydro-Mechanical Coupling: An Experimental Study
by Ying Zhang, Kai He, Jianming Yang, Jiliang Pan, Xun Xi, Xianhui Feng and Leiming Zhang
Minerals 2025, 15(3), 215; https://doi.org/10.3390/min15030215 - 23 Feb 2025
Cited by 2 | Viewed by 509
Abstract
Rocks with multi-shaped fractures in engineering activities like mining, underground energy storage, and hydropower construction are often exposed to environments where stress and seepage fields interact, which heightens the uncertainty of instability and failure mechanisms. This has long been a long-standing challenge in [...] Read more.
Rocks with multi-shaped fractures in engineering activities like mining, underground energy storage, and hydropower construction are often exposed to environments where stress and seepage fields interact, which heightens the uncertainty of instability and failure mechanisms. This has long been a long-standing challenge in the field of rock mechanics. Current research mainly focuses on the mechanical behavior, seepage, and energy evolution characteristics of single-fractured rocks under hydro-mechanical coupling. However, studies on the effects of multi-shaped fractures (such as T-shaped fractures, Y-shaped fractures, etc.) on these characteristics under hydro-mechanical coupling are relatively scarce. This study aims to provide new insights into this field by conducting hydro-mechanical coupling tests on multi-shaped fractured sandstones (single fractures, T-shaped fractures, Y-shaped fractures) with different inclination angles. The results show that hydro-mechanical coupling significantly reduces the peak strength, damage stress, crack initiation stress, and closure stress of fractured sandstone. The permeability jump factor (ξ) demonstrates the permeability enhancement effects of different fracture shapes. The ξ values for single fractures, T-shaped fractures, and Y-shaped fractures are all less than 2, indicating that fracture shape has a relatively minor impact on permeability enhancement. Fracture inclination and shape significantly affect the energy storage capacity of the rock mass, and the release of energy exhibits a nonlinear relationship with fracture propagation. An in-depth analysis of energy evolution characteristics under the influence of fracture shape and inclination reveals the transition pattern of the dominant role of energy competition in the progressive failure process. Microstructural analysis of fractured sandstone shows that elastic energy primarily drives fracture propagation and the elastic deformation of grains, while dissipative energy promotes particle fragmentation, grain boundary sliding, and plastic deformation, leading to severe grain breakage. The study provides important theoretical support for understanding the failure mechanisms of multi-shaped fractured sandstone under hydro-mechanical coupling. Full article
Show Figures

Figure 1

19 pages, 10166 KiB  
Article
A Fully Coupled Discontinuous Deformation Analysis Model for Simulating Hydromechanical Processes in Fractured Porous Media
by Yanzhi Hu, Xiao Li, Shouding Li, Zhaobin Zhang, Jianming He, Guanfang Li and Ming Zhang
Water 2024, 16(21), 3014; https://doi.org/10.3390/w16213014 - 22 Oct 2024
Cited by 1 | Viewed by 969
Abstract
Numerical simulations play a key role in the optimization of fracturing operation designs for unconventional reservoirs. Because of the presence of numerous natural discontinuities and pores, the rock masses of reservoirs can be regarded as fractured porous media. In this paper, a fully [...] Read more.
Numerical simulations play a key role in the optimization of fracturing operation designs for unconventional reservoirs. Because of the presence of numerous natural discontinuities and pores, the rock masses of reservoirs can be regarded as fractured porous media. In this paper, a fully coupled discontinuous deformation analysis model is newly developed to simulate the hydromechanical processes in fractured and porous media. The coupling of fracture seepage, pore seepage, and fracture network propagation is realized under the framework of DDA. The developed model is verified with several examples. Then, the developed DDA model is applied to simulate the hydraulic fracturing processes in fractured porous rock masses, and the effects of rock mass permeability on fracturing are investigated. Our findings suggest that high rock permeability may inhibit the stimulation of fracture networks, while increasing the viscosity of fracturing fluids can enhance the fracturing efficiency. This study provides a valuable numerical tool for simulating hydromechanical processes in fractured and porous media and can be used to analyze various geo-mechanical problems related to fluid interactions. Full article
(This article belongs to the Special Issue Thermo-Hydro-Mechanical Coupling in Fractured Porous Media)
Show Figures

Figure 1

17 pages, 5795 KiB  
Article
Analysis of Damage and Permeability Evolution of Sandstone under Compression Deformation
by Yao Rong, Yang Sun, Xiangsheng Chen, Haibin Ding and Changjie Xu
Appl. Sci. 2024, 14(16), 7368; https://doi.org/10.3390/app14167368 - 21 Aug 2024
Viewed by 1200
Abstract
A large number of experimental studies have demonstrated that the permeability and damage of rock are not constant but rather functionally dependent on stresses or stress-induced deformation. Neglecting the influence of damage and permeability evolution on rock mechanics and sealing properties can result [...] Read more.
A large number of experimental studies have demonstrated that the permeability and damage of rock are not constant but rather functionally dependent on stresses or stress-induced deformation. Neglecting the influence of damage and permeability evolution on rock mechanics and sealing properties can result in an overestimation of the safety and stability of underground engineering, leading to an incomplete assessment of the risks associated with surrounding rock failure. To address this, the damage and permeability evolution functions of rock under compression were derived through a combination of experimental results and theoretical analysis, unifying the relationship between porosity and permeability in both porous media flow and fractured flow. Based on this, a fluid–solid coupled seepage model considering rock damage and permeability evolution was proposed. More importantly, this model was utilized to investigate the behavior of deformation, damage, and permeability, as well as their coupled effects. The model’s validity was verified by comparing its numerical results with experimental data. The analysis results show that the evolution of permeability and porosity resulted from a competitive interaction between effective mean stress and stress-induced damage. When the effective mean stress was dominant, the permeability tended to decrease; otherwise, it followed an increasing trend. The damage evolution was primarily related to stress- and pressure-induced crack growth and irreversible deformation. Additionally, the influence of the seepage pressure on the strength, damage, and permeability of the investigated rock was evaluated. The model results reveal the damage and permeability evolution of the rock under compression, which has a certain guiding significance for the stability and safety analysis of rock in underground engineering. Full article
Show Figures

Figure 1

27 pages, 8869 KiB  
Article
Finite Element Method-Peridynamics Coupled Analysis of Slope Stability Affected by Rainfall Erosion
by Xin Gu, Laike Song, Xiaozhou Xia and Cheng Yu
Water 2024, 16(15), 2210; https://doi.org/10.3390/w16152210 - 5 Aug 2024
Cited by 5 | Viewed by 1797
Abstract
Rainfall is a pivotal factor resulting in the cause of slope instability. The traditional finite element method often fails to converge when dealing with the strongly nonlinear fluid–solid coupling problems, making it impossible to fully analyze the sliding process under the state of [...] Read more.
Rainfall is a pivotal factor resulting in the cause of slope instability. The traditional finite element method often fails to converge when dealing with the strongly nonlinear fluid–solid coupling problems, making it impossible to fully analyze the sliding process under the state of slope instability. Therefore, this paper uses the coupling of peridynamics (PD) and the finite element method (FEM) to propose a data exchange mode between the seepage field and the deformation field. The influencing factors of fine particle erosion during rainfall are further considered. According to the damage mechanism of the slope sliding process to the original structure of the soil, a modified erosion constitutive relationship is proposed, which takes into account the destructive effect of plastic deformation on coarse particles. Then, the influence of rainfall duration, rainfall intensity, erosion, and initial saturated permeability coefficient on slope stability was simulated and analyzed. This paper provides a novel concept for slope stability analysis and safety evaluation under rainfall conditions. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 7157 KiB  
Article
Application Study of Distributed Optical Fiber Seepage Monitoring Technology on Embankment Engineering
by Hao Li and Meng Yang
Appl. Sci. 2024, 14(13), 5362; https://doi.org/10.3390/app14135362 - 21 Jun 2024
Cited by 3 | Viewed by 1240
Abstract
It is very important for embankment engineering to consider the seepage factor. If the potential seepage is not discovered in time and seepage control measures are not appropriate, seepage is very likely to cause damage and deformation, resulting in embankment failure. Based on [...] Read more.
It is very important for embankment engineering to consider the seepage factor. If the potential seepage is not discovered in time and seepage control measures are not appropriate, seepage is very likely to cause damage and deformation, resulting in embankment failure. Based on temperature and seepage fields theories, a temperature–seepage coupled model is established in this paper. It is combined with a distributed temperature sensing (DTS) system to measure the temperature field of the porous media. This approach allows for the inversion of the inner seepage field, realizing the real-time monitoring of embankment health to ensure its safety and long-term operation. According to the coupling analysis on the temperature–seepage fields, for practical engineering, the influence of temperature on the seepage field is small and neglectable. Only the effect of the seepage field on the temperature field is considered. The DTS optical fiber temperature measurement system is widely used in various projects nowadays because of its high stability and efficiency advantages. The optical fiber is sensitive to temperature and can give fast and accurate temperature feedback regarding seepage location. Combined with the Heat Transfer Module in COMSOL, the multi-line heat source method can be used to invert the seepage field according to the temperature field of the porous medium inside the embankment and derive the seepage flow rate of the stable seepage field. For unstable seepage, optical fiber is good at seepage measuring and location detecting. For different practical engineering, a different heating power can be used for different seepage conditions. By monitoring the temperature change, the seepage condition can be inverted which is one of the indicators for evaluating engineering safety. Full article
Show Figures

Figure 1

18 pages, 2773 KiB  
Article
Seepage–Deformation Coupling Analysis of a Core Wall Rockfill Dam Subject to Rapid Fluctuations in the Reservoir Water Level
by Xueqin Zheng, Bin Yan, Wei Wang, Kenan Du and Yixiang Fang
Water 2024, 16(11), 1621; https://doi.org/10.3390/w16111621 - 5 Jun 2024
Cited by 1 | Viewed by 2083
Abstract
Core wall rockfill dams are susceptible to cracking at the dam’s crest, as well as collapse and settlement of the rockfill during storage and operation periods, particularly due to rapid fluctuations in the water level in pumped storage power stations. Most studies on [...] Read more.
Core wall rockfill dams are susceptible to cracking at the dam’s crest, as well as collapse and settlement of the rockfill during storage and operation periods, particularly due to rapid fluctuations in the water level in pumped storage power stations. Most studies on the impact of fluctuations in the reservoir’s water level on dam deformation have considered fluctuations of less than 5 m/d, while pumped storage power stations experience much larger fluctuations. Additionally, the seepage and stress fields within the dam’s rock and soil interact and influence each other. Few studies have used the coupling theory of seepage and stress to analyze seepage and deformation in core wall rockfill dams. To address these issues, a finite element model using seepage–stress coupling theory was utilized to investigate the variations in the phreatic line, earth pressure, and deformation of a core wall rockfill dam due to rapid fluctuations in the reservoir’s water level. Additionally, the results of the finite element simulation were compared with and analyzed alongside safety monitoring data. The results indicated that, upon a sudden decrease in the reservoir’s water level, there was a lag in the decline of the phreatic line in Rockfill I, which created a large hydraulic gradient, resulting in a reverse seepage field on the dam’s slope surface and generating a drag force directed upstream. Consequently, a significant concentration of stress occurred on one-third of the upstream slope surface of the dam and the seepage curtain, and the increase in horizontal displacement was substantially greater than the increase in settlement from one-third of the rockfill’s height to the dam’s foundation. The deformation was more sensitive to the lowest water level of the reservoir rather than to the fastest rate of decline. Sudden rises in the reservoir’s water level result in decreased horizontal displacements and settlement of the dam. Amid rapid fluctuations of the reservoir’s water level, changes in the vertical earth pressure were more pronounced at the bottom of the core wall than in its midsection. Compared with the core wall, variations in the vertical earth pressure in the upstream and downstream filter layers were minor at similar elevations. A peak horizontal displacement of 6.5 mm was noted at one-third the height of Rockfill I, with the greatest increase in settlement of 3.5 mm at the dam’s crest. To ensure a project’s safety, it is crucial to control the elevation of the lowest point during a sudden drop in the reservoir’s level and to carefully monitor for cracks or voids within approximately one-third of the dam’s height in Rockfill I and at the dam crest. This study’s results provide a scientific basis for assessing core wall rockfill dams’ health and securing long-term safety at pumped storage power facilities. Full article
Show Figures

Figure 1

22 pages, 5094 KiB  
Article
A Fully Coupled Gas–Water–Solids Mathematical Model for Vertical Well Drainage of Coalbed Methane
by Chengwang Wang, Haifeng Zhao, Zhan Liu, Tengfei Wang and Gaojie Chen
Energies 2024, 17(6), 1497; https://doi.org/10.3390/en17061497 - 21 Mar 2024
Viewed by 1510
Abstract
The coupling relationship between the deformation field, the diffusion field, and the seepage field is an important factor in fluid transport mechanisms in the long-term coalbed methane (CBM) exploitation process. A mathematical model of gas–water two-phase fluid–structure coupling in a double-porosity medium in [...] Read more.
The coupling relationship between the deformation field, the diffusion field, and the seepage field is an important factor in fluid transport mechanisms in the long-term coalbed methane (CBM) exploitation process. A mathematical model of gas–water two-phase fluid–structure coupling in a double-porosity medium in coal reservoirs is established in this paper. Taking Hancheng Block, a typical production block in Qinshui Basin, as the geological background critical desorption pressure, reservoir permeability anisotropy is considered in the model. COMSOL Multiphysics (COMSOL_6.0) was used to create the model. The accuracy and rationality of the model were verified by comparing field production data with the results of the simulation. Using the simulation, the influence law of various reservoir geological characteristics parameters (Langmuir strain constant, ratio of critical desorption pressure to reservoir pressure of coal seam (CDPRP), elastic modulus, initial water saturation, Langmuir pressure, etc.) on CBM productivity, reservoir pressure, and permeability ratio was discussed, and a thorough analysis of the factors affecting productivity was obtained using the orthogonal test method. The findings of this study indicate that the change in permeability is the result of the superposition effect of many factors. Different stages of drainage have different primary regulating factors. Rock skeleton stress has a consequence on coal matrix permeability in the early drainage stage, and coal matrix shrinkage is primarily impacted in the later drainage stage. Besides the initial water saturation, other reservoir geological parameters (e.g., CDPRP, Langmuir volume, Langmuir strain constant, elastic modulus) have a strong relationship with productivity. When the value of coal geological parameters increases, the degree of productivity release is higher (as the initial water saturation increases, the production decreases correspondingly). Different coal and rock parameters have varying levels of impact on the drainage stage of CBM wells. The influences of the CDPRP, Langmuir volume, Langmuir strain constant, and elastic modulus on gas production are mainly concentrated in the initial and intermediate drainage stages and begin to fall off during the last drainage stage. Per the multi-factor analysis, the main coal–rock parameters affecting the productivity release are the Langmuir strain constant, followed by the CDPRP and other parameters. The analysis findings can offer theoretical guidance for CBM well selection and layer selection and enhance the block’s overall CBM development level. The improved productivity prediction model for CBM, which is based on fluid–structure coupling theory, can offer a new technical benchmark for CBM well productivity prediction. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery for Unconventional Oil and Gas Reservoirs)
Show Figures

Figure 1

12 pages, 3160 KiB  
Article
Theoretical Study of the Evolution Characteristics of the Plastic Deformation Zone of Type I–II Composite Fractured Rock under Osmotic Pressure
by Zelin Niu, Yun Cheng, Jiafeng Pei and Tian Xu
Appl. Sci. 2024, 14(5), 1796; https://doi.org/10.3390/app14051796 - 22 Feb 2024
Viewed by 1018
Abstract
The coupled seepage–stress action has a significant deterioration effect on the structural face of the hydraulic tunnel enclosure, which intensifies the shear rupture tendency of the deteriorated structural face of the rock mass. The plastic deformation of a typical I–II composite fissure was [...] Read more.
The coupled seepage–stress action has a significant deterioration effect on the structural face of the hydraulic tunnel enclosure, which intensifies the shear rupture tendency of the deteriorated structural face of the rock mass. The plastic deformation of a typical I–II composite fissure was taken as the research object, the characteristics of the tip plastic zone of the composite fissure seepage rock were explored, and the influence law of osmotic pressure and fissure rock parameters (fissure dip angle, Poisson’s ratio, and fissure length) on the radius of the tip plastic zone was analyzed. Based on the Drucker–Prager yield criterion and the stress intensity factor of the composite fracture, the theoretical analytical formula of the fracture plastic zone radius under the action of high and low osmotic pressure was established, and the fracture rock plastic zone radius was significantly correlated with the fracture parameters. The radius of the plastic zone of fracture under low osmotic pressure evolves in a trend of decreasing–increasing–decreasing with the increase in fracture dip angle, and the peak radius of the plastic zone appears at 45°. Poisson’s ratio and fracture length have less influence on the radius of the plastic zone. The radius of the plastic zone of fracture under high osmotic pressure grows in an incremental nonlinear curve, and the peak radius of the plastic zone appears at 90°, being positively correlated with the length of fracture. This study can provide theoretical reference for the analysis of the stability of the surrounding rock in hydraulic tunnels. Full article
Show Figures

Figure 1

17 pages, 5660 KiB  
Article
Research on the Deformation Law of Foundation Excavation and Support Based on Fluid–Solid Coupling Theory
by Rongyu Xia, Zhizhong Zhao, Risheng Wang, Maolin Xu, Shujun Ye and Meng Xu
Sensors 2024, 24(2), 426; https://doi.org/10.3390/s24020426 - 10 Jan 2024
Viewed by 1424
Abstract
To investigate the impact of underground water seepage and soil stress fields on the deformation of excavation and support structures, this study initially identified the key influencing factors on excavation deformation. Subsequently, through a finite element simulation analysis using Plaxis, this study explored [...] Read more.
To investigate the impact of underground water seepage and soil stress fields on the deformation of excavation and support structures, this study initially identified the key influencing factors on excavation deformation. Subsequently, through a finite element simulation analysis using Plaxis, this study explored the effects of critical factors, such as the excavation support form, groundwater lowering depth, permeability coefficient, excavation layer, and sequence on excavation deformation. Furthermore, a comprehensive consideration of various adverse factors was integrated to establish excavation support early warning thresholds, and optimal dewatering strategies. Finally, this study validated the simulation analysis through an on-site in situ testing with wireless sensors in the context of a physical construction site. The research results indicate that the internal support system within the excavation piles exhibited better stability compared to the external anchor support system, resulting in a 34.5% reduction in the overall deformation. Within the internal support system, the factors influencing the excavation deformation were ranked in the following order: water level (35.5%) > permeability coefficient (17.62%) > excavation layer (11.4%). High water levels, high permeability coefficients, and multi-layered soils were identified as the most unfavorable factors for excavation deformation. The maximum deformation under the coupled effect of these factors was established as the excavation support early warning threshold, and the optimal dewatering strategy involved lowering the water level at the excavation to 0.5 m below the excavation face. The on-site in situ monitoring data obtained through wireless sensors exhibited low discrepancies compared to the finite element simulation data, indicating the high precision of the finite element model for considering the fluid–structure interaction. Full article
Show Figures

Figure 1

27 pages, 9243 KiB  
Article
Heat Production Capacity Simulation and Parameter Sensitivity Analysis in the Process of Thermal Reservoir Development
by Yi Yang, Guoqiang Fu, Jingtao Zhao and Lei Gu
Energies 2023, 16(21), 7258; https://doi.org/10.3390/en16217258 - 25 Oct 2023
Cited by 4 | Viewed by 1399
Abstract
The development of a geothermal system involves changes in the temperature field (T), seepage field (H), stress field (M), and chemical field (C) and the influence among them and injecting the heat extraction working fluid into the injection well that flows (migrating) through [...] Read more.
The development of a geothermal system involves changes in the temperature field (T), seepage field (H), stress field (M), and chemical field (C) and the influence among them and injecting the heat extraction working fluid into the injection well that flows (migrating) through natural fractures and exchanges heat with the geothermal high-temperature rock. At the same time, the injection of low-temperature working fluid will induce thermal stress, resulting in changes in the reservoir temperature field and stress field. To study the influence factors and influence degree of heat production performance and mining life under multi-field coupling in the process of thermal reservoir development, based on THMC multi-field coupling numerical simulation software, this paper deeply studies the control differential equations and boundary coupling conditions of rock mass (fracture) deformation, seepage, heat exchange, the chemical reaction, and other processes based on the numerical solution method of the discrete fracture network model, simulating heat production capacity during the deep geothermal resource extraction process. The reservoir geological model analysis and generalization, parameter setting, boundary conditions, initial condition settings, mesh generation, and other steps were carried out in turn. Two different heat extraction working fluids, water, and CO2 were selected for numerical simulation in the mining process. The changes in the thermal reservoir temperature, net heat extraction rate, and SiO2 concentration during the thirty years of systematic mining were compared. The results show that CO2 has a better heat extraction effect. Finally, the reservoir thermal conductivity, heat capacity, well spacing, injection temperature, fracture spacing, fracture permeability, fracture number, fracture length, and other parameters were set, respectively. The parameter variation range was set, and the parameter sensitivity analysis was carried out. The numerical simulation results show that the engineering production conditions (injection temperature, well spacing) have little effect on the thermal efficiency and mining life, and the properties of fractures (fracture permeability, fracture number, fracture length) have a great influence. Full article
(This article belongs to the Special Issue Numerical Heat Transfer and Fluid Flow 2023)
Show Figures

Figure 1

18 pages, 3857 KiB  
Article
Determination of Safety Monitoring Indices for Roller-Compacted Concrete Dams Considering Seepage–Stress Coupling Effects
by Wenbing Zhang, Hanhan Li, Danda Shi, Zhenzhong Shen, Shan Zhao and Chunhui Guo
Mathematics 2023, 11(14), 3224; https://doi.org/10.3390/math11143224 - 22 Jul 2023
Cited by 14 | Viewed by 2006
Abstract
Analyzing the working conditions of a dam using safety monitoring indices (SMIs) is a relatively intuitive and effective method for dam safety evaluation. Therefore, a reasonable and accurate method for determining the SMIs of a dam is of vital importance for dam safety [...] Read more.
Analyzing the working conditions of a dam using safety monitoring indices (SMIs) is a relatively intuitive and effective method for dam safety evaluation. Therefore, a reasonable and accurate method for determining the SMIs of a dam is of vital importance for dam safety assessment. However, the current methods for determining the SMIs of dams, especially roller-compacted concrete (RCC) dams, have many shortcomings, such as ignoring the construction process of the dam, the coupling effect among multiple physical fields, etc. In this paper, a novel SMI determination method considering the seepage–stress coupling effects was proposed for RCC dams with the assistance of a constructed seepage and stress coupling model so as to address the deficiency of existing RCC dams in determining SMIs. The coupled mathematical model was developed in COMSOL Multiphysics to establish a finite element analysis model of an RCC gravity dam in Henan Province, China. Moreover, the seepage anisotropy of the RCC construction layers was also considered in the model. Finally, the seepage, stress, and deformation characteristics of the RCC dam were analyzed based on the model, and the seepage and deformation SMIs of the dam were determined and compared with traditional methods. The results show that seepage, stress, and displacement fields are distributed similarly for both coupled and uncoupled models. However, in contrast to the uncoupled model, the hydraulic head contour distribution is more dispersed in the coupled model. Additionally, the stress and displacement simulated by the coupled model increase at different rates, with a more pronounced stress concentration near the dam heel. Comparing the seepage and stress SMIs of RCC dam obtained from different methods, it was found that the indices of dam seepage discharge and crest displacement that are calculated by considering the seepage–stress coupling effect and anisotropic characteristics of RCC construction layers are 34.78% and 31.98% lower than results obtained by ignoring these two effects, respectively. Therefore, it is crucial to consider the seepage–stress coupling effect and the anisotropic characteristics of RCC when determining the SMIs for RCC dams. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

25 pages, 16775 KiB  
Article
Field Investigation and Finite Element Analysis of Landslide-Triggering Factors of a Cut Slope Composed of Granite Residual Soil: A Case Study of Chongtou Town, Lishui City, China
by Tiesheng Yan, Jun Xiong, Longjian Ye, Jiajun Gao and Hui Xu
Sustainability 2023, 15(8), 6999; https://doi.org/10.3390/su15086999 - 21 Apr 2023
Cited by 10 | Viewed by 2498
Abstract
Landslides caused by excavations and precipitation events are widespread types of slope failures in southwest Zhejiang, China, in areas with granite residual soil. Investigations of the effect of high precipitation on the hydrological response, stability, and evolutionary mechanism of cut slopes in granite [...] Read more.
Landslides caused by excavations and precipitation events are widespread types of slope failures in southwest Zhejiang, China, in areas with granite residual soil. Investigations of the effect of high precipitation on the hydrological response, stability, and evolutionary mechanism of cut slopes in granite soil areas are lacking. The characteristics of historical landslides in Chongtou Town in southwestern Zhejiang were summarized, and a typical slope was selected for analysis. The hydraulic and mechanical properties of the residual soil and fully weathered granite were tested, and the surface displacements on the slope were monitored. Geo-studio was utilized to establish a coupled seepage-deformation model to validate the numerical method and investigate the landslide-triggering factors of the cut slope. The results showed nearly all historical landslides in Chongtou Town were triggered by precipitation events, and the slide bodies consisted of residual soil and fully weathered granite with similar geotechnical properties. The simulated and measured horizontal displacements were in good agreement, indicating the reliability of the established model and parameters. The stability coefficient decreased with an increase in the gradient or height of the cut slope. The critical height values were 5.3 m, 5.5 m, 5.7 m, 6.0 m, and 6.3 m at slopes of 60°, 65°, 70°, 75°, and 80°, respectively. Long-term torrential rain and short-term high-intensity precipitation events are likely to trigger landslides when the precipitation event lasts longer than 26 h and 78 h, respectively. The landslide formation includes four stages: slope evolution, formation of unloading zone at slope foot, migration and loss of soil particles, and instability of the cut slope. The findings can be used to prevent and manage landslides on cut slopes in areas with granite residual soil. Full article
Show Figures

Figure 1

16 pages, 4918 KiB  
Article
Electrochemical Accelerating Leaching Behavior of Plastic Concrete for Cut-Off Walls
by Lina Zhou, Cailong Ma, Zhenhao Zhang, Shuangxin Sun, Xuanchi Liu and Jinjing Liao
Buildings 2023, 13(4), 937; https://doi.org/10.3390/buildings13040937 - 1 Apr 2023
Cited by 2 | Viewed by 2282
Abstract
Plastic concrete is a ductile material with a low elastic modulus (1000–3000 MPa), good flexibility, a and strong ability to adapt to the surrounding soil deformation. Hydraulic concrete mainly serves in a watery environment, so the leaching behavior of plastic concrete is crucial [...] Read more.
Plastic concrete is a ductile material with a low elastic modulus (1000–3000 MPa), good flexibility, a and strong ability to adapt to the surrounding soil deformation. Hydraulic concrete mainly serves in a watery environment, so the leaching behavior of plastic concrete is crucial and cannot be neglected. Meanwhile, improving the crack resistance and effect of anti-seepage is also a primary task for cut-off walls. In this paper, in order to investigate the mechanical performance and leaching behavior of plastic concrete, a uniaxial compressive strength test was performed on plastic concrete specimens of a specific age (28 days) and different percentages of replacement cement by single bentonite (40%, 50%, and 60%) and bentonite (30%) together with clay (10%, 20%, and 30%), and the compressive strength, elastic modulus, pH value of the leaching solution, ultrasonic transmit time, electrical resistivity, and calcium ion dissolution concentration of plastic concrete have been evaluated. Moreover, the quantitative relationship between pH value and calcium ion concentration change was built through the electrochemical accelerating leaching method. According to the results, adding 40–60% soil materials can entirely meet the compressive strength (2–7 MPa), elastic modulus (below 3000 MPa), and relative permeability coefficient (below 1 × 10−7 cm/s) of plastic concrete used for cut-off walls while the compressive strength and elastic modulus of plastic concrete with 30% replacement cement by bentonite would be higher than 7 MPa and 3000 MPa, respectively. The leaching resistance of plastic concrete can be improved by more than 30% by adding bentonite coupled with clay, and three representative zones were observed through SEM and energy spectrum analysis, and Ca/Si molar ratio decreased by 30% after leaching. Full article
Show Figures

Figure 1

Back to TopTop