Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = coupled heat conduction and advection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3620 KB  
Article
Geomechanical Analysis of Hot Fluid Injection in Thermal Enhanced Oil Recovery
by Mina S. Khalaf
Energies 2026, 19(2), 386; https://doi.org/10.3390/en19020386 - 13 Jan 2026
Viewed by 168
Abstract
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress [...] Read more.
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress rotation within a displacement discontinuity method (DDM) framework. This study aims to examine the influence of sustained hot-fluid injection on stress redistribution, hydraulic-fracture deformation, and fracture stability in thermal-EOR by accounting for coupled thermal, hydraulic, and mechanical interactions. This study develops a fully coupled thermo-poroelastic DDM formulation in which fracture-surface normal and shear displacement discontinuities, together with fluid and heat influx, act as boundary sources to compute time-dependent stresses, pore pressure, and temperature, while internal fracture fluid flow (Poiseuille-based volume balance), heat transport (conduction–advection with rock exchange), and mixed-mode propagation criteria are included. A representative scenario considers an initially isothermal hydraulic fracture grown to 32 m, followed by 12 months of hot-fluid injection, with temperature contrasts of ΔT = 0–100 °C and reduced pumping rate. Results show that the hydraulic-fracture aperture increases under isothermal and modest heating (ΔT = 25 °C) and remains nearly stable near ΔT = 50 °C, but progressively narrows for ΔT = 75–100 °C despite continued injection, indicating potential injectivity decline driven by thermally induced compressive stresses. Hot injection also tightens fracture tips, restricting unintended propagation, and produces pronounced near-fracture stress amplification and re-orientation: minimum principal stress increases by 6 MPa for ΔT = 50 °C and 10 MPa for ΔT = 100 °C, with principal-stress rotation reaching 70–90° in regions adjacent to the fracture plane and with markedly elevated shear stresses that may promote natural-fracture activation. These findings show that temperature effects can directly influence injectivity, fracture containment, and the risk of unintended fracture or natural-fracture activation, underscoring the importance of temperature-aware geomechanical planning and injection-strategy design in field operations. Incorporating these effects into project design can help operators anticipate injectivity decline, improve fracture containment, and reduce geomechanical uncertainty during long-term hot-fluid injection. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

16 pages, 4169 KB  
Article
Changes in Heat and Energy During Depressurization-Induced Natural Gas Hydrate Dissociation in Porous Media
by Mengchen Zhu, Haitao Zhang, Yunwei Shi, Jiaxing Zhou and Liang Fu
Processes 2025, 13(4), 1023; https://doi.org/10.3390/pr13041023 - 29 Mar 2025
Cited by 3 | Viewed by 1079
Abstract
Natural gas hydrates (shortened as hydrates) are expected to be a prospective alternative to traditional fossil energies. The main strategy of exploring hydrates is achieved by dissociating solid hydrates into gas and water with the depressurization method. However, we have little knowledge on [...] Read more.
Natural gas hydrates (shortened as hydrates) are expected to be a prospective alternative to traditional fossil energies. The main strategy of exploring hydrates is achieved by dissociating solid hydrates into gas and water with the depressurization method. However, we have little knowledge on the changes in heat and energy, which are implicit essences compared with explicit temperature. Thus, this study for the first time investigates the evolutionary patterns of heat and energy during hydrate dissociation, by fully coupled thermal–hydraulic–mechanical–chemical modelling. A novel numerical technique (physics-based constrained conditions) is proposed to guarantee the stability and precision of the numerical computation. The classic Masuda’s experiment is used as a case study. Results show that the cumulative conduction heat tends to increase first and then decrease during the dissociation of hydrate, while the cumulative advection heat has the tendency to increase monotonically. External heat sources increase the energy, while phase change has a reduction effect on the change in energy. The role of conduction heat is minor, but the contribution of advection heat is considerable for the change in energy. Additionally, two implications are given for lab-scale experiments and in situ engineering from the perspective of energy. Our findings provide new insights into the mechanism of hydrate dissociation and are beneficial to the real-world engineering of hydrate exploration in terms of cost evaluation. Full article
Show Figures

Figure 1

26 pages, 3196 KB  
Article
Finite Difference Methods Based on the Kirchhoff Transformation and Time Linearization for the Numerical Solution of Nonlinear Reaction–Diffusion Equations
by Juan I. Ramos
Computation 2024, 12(11), 218; https://doi.org/10.3390/computation12110218 - 1 Nov 2024
Viewed by 1777
Abstract
Four formulations based on the Kirchhoff transformation and time linearization for the numerical study of one-dimensional reaction–diffusion equations, whose heat capacity, thermal inertia and reaction rate are only functions of the temperature, are presented. The formulations result in linear, two-point boundary-value problems for [...] Read more.
Four formulations based on the Kirchhoff transformation and time linearization for the numerical study of one-dimensional reaction–diffusion equations, whose heat capacity, thermal inertia and reaction rate are only functions of the temperature, are presented. The formulations result in linear, two-point boundary-value problems for the temperature, energy or heat potential, and may be solved by either discretizing the second-order spatial derivative or piecewise analytical integration. In both cases, linear systems of algebraic equations are obtained. The formulation for the temperature is extended to two-dimensional, nonlinear reaction–diffusion equations where the resulting linear two-dimensional operator is factorized into a sequence of one-dimensional ones that may be solved by means of any of the four formulations developed for one-dimensional problems. The multidimensional formulation is applied to a two-dimensional, two-equation system of nonlinearly coupled advection–reaction–diffusion equations, and the effects of the velocity and the parameters that characterize the nonlinear heat capacities and thermal conductivity are studied. It is shown that clockwise-rotating velocity fields result in wave stretching for small vortex radii, and wave deceleration and thickening for counter-clockwise-rotating velocity fields. It is also shown that large-core, clockwise-rotating velocity fields may result in large transient periods, followed by time intervals of apparent little activity which, in turn, are followed by the propagation of long-period waves. Full article
Show Figures

Figure 1

22 pages, 8287 KB  
Article
Long-Term Thermo-Hydraulic Numerical Assessment of Thermo-Active Piles—A Case of Tropical Soils
by Jiamin Zhang, Daniel Dias, Qiujing Pan, Chunjing Ma and Cristina de Hollanda Cavalcanti Tsuha
Appl. Sci. 2022, 12(15), 7653; https://doi.org/10.3390/app12157653 - 29 Jul 2022
Cited by 5 | Viewed by 2186
Abstract
Thermo-active piles are an upcoming technology for the utilization of subsurface geothermal energy in urban areas. This environmentally friendly technology has already been widespread for the heating and cooling of buildings in temperate regions, whereas in tropical regions it is still limited due [...] Read more.
Thermo-active piles are an upcoming technology for the utilization of subsurface geothermal energy in urban areas. This environmentally friendly technology has already been widespread for the heating and cooling of buildings in temperate regions, whereas in tropical regions it is still limited due to their unbalanced energy demands. This paper presents 3D thermo-hydraulic coupled numerical simulations to assess the long-term performance of thermo-active pile systems in tropical environments for different energy demands. The simulations are based on real data (in situ tests and field investigations) considering three typical thermal solicitations, thereby maintaining their practical relevance. Moreover, the energy exchange within soil control volumes is quantified based on an approach that allows calculating conductive and advective divergence. Parametric analyses regarding thermal solicitation, pile diameter, and groundwater flow are also performed. The results indicate that groundwater flow plays the most important role in improving the thermal balance of thermo-active piles. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

14 pages, 16699 KB  
Article
The Influence of Wind-Induced Waves on ENSO Simulations
by Yao Hu, Xiaoxiao Tan, Youmin Tang, Zheqi Shen and Ying Bao
J. Mar. Sci. Eng. 2021, 9(5), 457; https://doi.org/10.3390/jmse9050457 - 23 Apr 2021
Viewed by 2488
Abstract
We evaluated the influence of wind-induced waves on El Niño-Southern Oscillation (ENSO) simulations based on the First Institute of Oceanography-Earth System Model version 2 (FIO-ESM 2.0), a global coupled general circulation model (GCM) with a wave component. Two sets of experiments, the GCM, [...] Read more.
We evaluated the influence of wind-induced waves on El Niño-Southern Oscillation (ENSO) simulations based on the First Institute of Oceanography-Earth System Model version 2 (FIO-ESM 2.0), a global coupled general circulation model (GCM) with a wave component. Two sets of experiments, the GCM, with and without a wave model, respectively, were conducted in parallel. The simulated sea surface temperature (SST) was cooled by introducing the wave model via the enhancement of the vertical mixing in the ocean upper layer. The strength of ENSO was intensified and better simulated with the inclusion of wave-induced mixing, particularly the La Niña amplitude. Furthermore, the simulated amplitude and spatial pattern of El Niño events were slightly altered with the wave model. Heat budget analyses revealed the intensification of La Niña events to be generally attributed to wave-induced vertical advection, followed by the zonal and meridional advection terms. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

19 pages, 2169 KB  
Article
Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger
by Linlin Zhang, Zhonghua Shi and Tianhao Yuan
Sustainability 2020, 12(18), 7345; https://doi.org/10.3390/su12187345 - 8 Sep 2020
Cited by 10 | Viewed by 4218
Abstract
In this paper, a dynamic heat transfer model for the vertical double U-tube borehole heat exchanger (BHE) was developed to comprehensively address the coupled heat transfer between the in-tube fluid and the soil with groundwater advection. A new concept of the heat transfer [...] Read more.
In this paper, a dynamic heat transfer model for the vertical double U-tube borehole heat exchanger (BHE) was developed to comprehensively address the coupled heat transfer between the in-tube fluid and the soil with groundwater advection. A new concept of the heat transfer effectiveness was also proposed to evaluate the BHE heat exchange performance together with the index of the heat transfer rate. The moving finite line heat source model was selected for heat transfer outside the borehole and the steady-state model for inside the borehole. The data obtained in an on-site thermal response test were used to validate the physical model of the BHE. Then, the effects of soil type, groundwater advection velocity, inlet water flow rate, and temperature on the outlet water temperature of BHE were explored. Results show that ignoring the effects of groundwater advection in sand gravel may lead to deviation in the heat transfer rate of up to 38.9% of the ground loop design. The groundwater advection fosters the heat transfer of BHE. An increase in advection velocity may also help to shorten the time which takes the surrounding soil to reach a stable temperature. The mass flow rate of the inlet water to the BHE should be more than 0.5 kg·s−1 but should not exceed a certain upper limit under the practical engineering applications with common scale BHE. The efficiency of the heat transfer of the double U-tube BHE was determined jointly by factors such as the soil’s physical properties and the groundwater advection velocity. Full article
Show Figures

Figure 1

19 pages, 4180 KB  
Article
Long-Term Temperature Evaluation of a Ground-Coupled Heat Pump System Subject to Groundwater Flow
by Nehed Jaziri, Jasmin Raymond, Nicoló Giordano and John Molson
Energies 2020, 13(1), 96; https://doi.org/10.3390/en13010096 - 23 Dec 2019
Cited by 3 | Viewed by 3585
Abstract
The performance of ground-coupled heat pump systems (GCHPs) operating under significant groundwater flow can be difficult to predict due to advective heat transfer in the subsurface. This is the case of the Carignan-Salières elementary school located on the south shore of the St. [...] Read more.
The performance of ground-coupled heat pump systems (GCHPs) operating under significant groundwater flow can be difficult to predict due to advective heat transfer in the subsurface. This is the case of the Carignan-Salières elementary school located on the south shore of the St. Lawrence River near Montréal, Canada. The building is heated and cooled with a GCHP system including 31 boreholes subject to varying groundwater flow conditions due to the proximity of an active quarry being irregularly dewatered. A study with the objective of predicting the borehole temperatures in order to anticipate potential operational problems was conducted, which provided an opportunity to evaluate the impact of groundwater flow. For this purpose, a numerical model was calibrated using a full-scale heat injection test and then run under different scenarios for a period of twenty years. The heat exchange capacity of the GCHP system is clearly enhanced by advection when the Darcy flux changes from 6 × 10−8 m s−1 (no dewatering) to 8 × 10−7 m s−1 (high dewatering). This study further suggests that even the lowest groundwater flow condition can be beneficial to avoid a progressive cooling of the subsurface due to the unbalanced building loads, which can have important impacts for design of new systems. Full article
(This article belongs to the Special Issue Volume II: Low Enthalpy Geothermal Energy)
Show Figures

Figure 1

16 pages, 5790 KB  
Article
Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater
by Xinbo Lei, Xiuhua Zheng, Chenyang Duan, Jianhong Ye and Kang Liu
Energies 2019, 12(19), 3698; https://doi.org/10.3390/en12193698 - 27 Sep 2019
Cited by 27 | Viewed by 4536
Abstract
The flow of groundwater and the interaction of buried pipe groups will affect the heat transfer efficiency and the distribution of the ground temperature field, thus affecting the design and operation of ground source heat pumps. Three-dimensional numerical simulation is an effective method [...] Read more.
The flow of groundwater and the interaction of buried pipe groups will affect the heat transfer efficiency and the distribution of the ground temperature field, thus affecting the design and operation of ground source heat pumps. Three-dimensional numerical simulation is an effective method to study the buried pipe heat exchanger and ground temperature distribution. According to the heat transfer control equation of non-isothermal pipe flow and porous media, combined with the influence of permeable groundwater and tube group, a heat-transfer coupled heat transfer model of the buried pipe group was established, and the accuracy of the model was verified by the sandbox test and on-site thermal response test. By processing the layout of the buried pipe in the borehole to reduce the number of meshes and improve the meshing quality, a three-dimensional numerical model of the buried pipe cluster at the site scale was established. Additionally, the ground temperature field under the thermal-osmotic coupling of the buried pipe group during groundwater flow was simulated and the influence of the head difference and hydraulic conductivity on the temperature field around the buried pipe group was calculated and analyzed. The results showed that the research on the influence of the tube group and permeable groundwater on the heat transfer and ground temperature field of a buried pipe simulated by COMSOL software is an advanced method. Full article
Show Figures

Figure 1

23 pages, 34625 KB  
Article
Thermo-Physical and Geo-Mechanical Characterization of Faulted Carbonate Rock Masses (Valdieri, Italy)
by Jessica Maria Chicco, Damiano Vacha and Giuseppe Mandrone
Remote Sens. 2019, 11(2), 179; https://doi.org/10.3390/rs11020179 - 18 Jan 2019
Cited by 14 | Viewed by 5531
Abstract
Water in rock masses is a key factor in geo-mechanics, hydrogeology, mining, geo-thermics, and more. It is relevant in interpreting rock mass behavior (e.g., water-rock interaction or slope stability), as well as in defining heat transfer mechanisms. Pointing out the contribution of secondary [...] Read more.
Water in rock masses is a key factor in geo-mechanics, hydrogeology, mining, geo-thermics, and more. It is relevant in interpreting rock mass behavior (e.g., water-rock interaction or slope stability), as well as in defining heat transfer mechanisms. Pointing out the contribution of secondary porosity in increasing advective heat transfer instead of the conduction phenomenon, this study aims to highlight a different thermal response of sound rocks and faulted zones. Moreover, it provides some methodological suggestions to minimize environment disturbance in data collection and a robust interpretation of the results. An interesting outcrop was identified in a carbonate quarry near Valdieri (north-west Italian Alps): it was studied coupling a geo-mechanical and a thermo-physical approach. In particular, geo-mechanical and photogrammetric surveys, InfraRed Thermography (IRT), and Thermal Conductivity (TC) measurements were conducted. The rationale of the research is based on the fact that, when a substantial temperature difference between flowing groundwater and rocks was detected, IRT can reveal information about geo-mechanical and hydrogeological properties of the rock masses such as a degree of fracturing and joint interconnection. A comparative field and laboratory analysis using different devices enabled a more detailed insight providing values in both dry and wet conditions. A different thermal response was highlighted for the cataclastic zone as well. IRT results showed an evident inverse relationship among the number of joints per meter and the detected surface temperature. This is probably caused by the higher water flow within the cataclastic fault zone. Moreover, low fractured portions of the rock mass presented higher cooling rates and conducted heat far more than those with poor geo-mechanical characteristics (difference up to 40%). A negligible ratio between wet and dried thermal conductivity (about 1%) was also detected in lab measurements, which confirmed that primary porosity is not usually relevant in influencing thermal properties of the sound rock. Full article
(This article belongs to the Special Issue Remote Sensing of Engineering Geological Science)
Show Figures

Graphical abstract

12 pages, 3184 KB  
Article
Field Analysis of Stepwise Effective Thermal Conductivity along a Borehole Heat Exchanger under Artificial Conditions of Groundwater Flow
by Yoshitaka Sakata, Takao Katsura, Katsunori Nagano and Manabu Ishizuka
Hydrology 2017, 4(2), 21; https://doi.org/10.3390/hydrology4020021 - 29 Mar 2017
Cited by 16 | Viewed by 6094
Abstract
Heat advection caused by groundwater flow can potentially improve the performance of a borehole heat exchanger. However, the required flow velocity is not achieved under most natural conditions. This study focuses on artificial groundwater flow generated by pumping and investigates the associated effect [...] Read more.
Heat advection caused by groundwater flow can potentially improve the performance of a borehole heat exchanger. However, the required flow velocity is not achieved under most natural conditions. This study focuses on artificial groundwater flow generated by pumping and investigates the associated effect in a lowland area near the Toyohira River alluvial fan, Sapporo, Japan. Thermal response test results are compared under natural and artificial groundwater flow conditions. A pumping well is constructed one meter from the borehole. Temperature profiles are measured in the U-tube during testing, using a pair of optic fiber distributed temperature sensors. The effective thermal conductivity is calculated from the profiles obtained in each 10-m sub-layer; this thermal conductivity is termed the stepwise thermal conductivity. Additionally, the upward flow velocity in the pumping well is measured to estimate the mean groundwater flow velocity at the borehole. The results show that effective thermal conductivity increases at depths less than 50 m, where the pumping creates mean velocities greater than 0.1 m d−1 in each sub-layer (1.5 md−1 on average). Thus, a borehole length of 50 m is more reasonable at the test site for its efficiency in a ground source heat pump system coupled with the pumping well than that used. Full article
(This article belongs to the Special Issue Groundwater Flow)
Show Figures

Figure 1

13 pages, 705 KB  
Article
Finite element modeling and experimental investigation of infiltration of sodium chloride solution into nonviable liver tissue
by Rimantas Barauskas, Antanas Gulbinas and Giedrius Barauskas
Medicina 2007, 43(5), 399; https://doi.org/10.3390/medicina43050049 - 22 Apr 2007
Cited by 13 | Viewed by 1228
Abstract
The aim of this study was to establish a mathematical model of the infiltration of sodium chloride solution into cadaveric liver tissue.
Methods
. The time law of the flow of the infiltrated fluid at every node of the finite element model was [...] Read more.
The aim of this study was to establish a mathematical model of the infiltration of sodium chloride solution into cadaveric liver tissue.
Methods
. The time law of the flow of the infiltrated fluid at every node of the finite element model was obtained in terms of Darcy’s velocity, pressure, and volumetric saturation fraction. The model equations interpret the liver tissue as a porous medium taking into account the hydraulic conductivity, capacity, and absorption mechanisms. Capability of the cadaveric liver tissue to absorb the fluid is taken into account by means of the nonlinear relationship of hydraulic capacity and absorption coefficients against the volumetric saturation fraction. To explain certain inadequacies between the computational model and experiment, the idealized models of empty blood vessels in the vicinity of the injection probe have been used. The model has been implemented in computational environment COMSOL Multiphysics. Experimental procedures were performed to analyze fluid infiltration and to calculate volume of fluid, which might be injected into certain volume of nonviable liver tissue.
Results
. The necessary physical constants of hydraulic conductivity, capacity, and absorp- tion of liver tissue have been determined by comparing the simulation results against the experimental data. The congruence of the modeling results against the experiment may be regarded as satisfactory.
Conclusion
. The established model analyses distribution of injected solution taking into account the hydraulic conductivity, capacity, and absorption mechanisms of liver tissue. The obtained results are of importance developing complex models of electro-thermal heating coupled with heat advection by means of infiltrated sodium chloride solution. Full article
Back to TopTop