Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = counterreceptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1470 KiB  
Review
Selectin-Mediated Signaling—Shedding Light on the Regulation of Integrin Activity in Neutrophils
by Anika Cappenberg, Marina Kardell and Alexander Zarbock
Cells 2022, 11(8), 1310; https://doi.org/10.3390/cells11081310 - 12 Apr 2022
Cited by 29 | Viewed by 8807
Abstract
As a consequence of tissue injury or infection, neutrophils are recruited in a stepwise recruitment process from the bloodstream into the surrounding tissue. Selectins are a family of adhesion molecules comprised of L-, E-, and P-selectin. Differences in expression patterns, protein structure, and [...] Read more.
As a consequence of tissue injury or infection, neutrophils are recruited in a stepwise recruitment process from the bloodstream into the surrounding tissue. Selectins are a family of adhesion molecules comprised of L-, E-, and P-selectin. Differences in expression patterns, protein structure, and ligand binding characteristics mediate distinct functions of each selectin. Interactions of selectins and their counter-receptors mediate the first contact of neutrophils with the endothelium, as well as subsequent neutrophil rolling along the endothelial surface. For efficient neutrophil recruitment, activation of β2-integrins on the cell surface is essential. Integrin activation can be elicited via selectin- as well as chemokine-mediated inside-out signaling resulting in integrin conformational changes and clustering. Dysregulation of selectin-induced integrin activation on neutrophils is involved in the development of severe pathological disease conditions including leukocyte adhesion deficiency (LAD) syndromes in humans. Here, we review molecular mechanisms involved in selectin-mediated signaling pathways in neutrophils and their impact on integrin activation, neutrophil recruitment, and inflammatory diseases. Full article
(This article belongs to the Special Issue Integrin Activation and Signal Transduction)
Show Figures

Figure 1

16 pages, 15180 KiB  
Article
Structural Characterization of Rat Galectin-5, an N-Tailed Monomeric Proto-Type-like Galectin
by Federico M. Ruiz, Francisco J. Medrano, Anna-Kristin Ludwig, Herbert Kaltner, Nadezhda V. Shilova, Nicolai V. Bovin, Hans-Joachim Gabius and Antonio Romero
Biomolecules 2021, 11(12), 1854; https://doi.org/10.3390/biom11121854 - 9 Dec 2021
Cited by 2 | Viewed by 2950
Abstract
Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here [...] Read more.
Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region. Full article
(This article belongs to the Special Issue Cell Biology of Galectins)
Show Figures

Figure 1

17 pages, 3912 KiB  
Article
Growth, Proliferation and Metastasis of Prostate Cancer Cells Is Blocked by Low-Dose Curcumin in Combination with Light Irradiation
by Jochen Rutz, Aicha Benchellal, Wajdi Kassabra, Sebastian Maxeiner, August Bernd, Stefan Kippenberger, Nadja Zöller, Felix K.-H. Chun, Eva Juengel and Roman A. Blaheta
Int. J. Mol. Sci. 2021, 22(18), 9966; https://doi.org/10.3390/ijms22189966 - 15 Sep 2021
Cited by 20 | Viewed by 3283
Abstract
Although anti-cancer properties of the natural compound curcumin have been reported, low absorption and rapid metabolisation limit clinical use. The present study investigated whether irradiation with visible light may enhance the inhibitory effects of low-dosed curcumin on prostate cancer cell growth, proliferation, and [...] Read more.
Although anti-cancer properties of the natural compound curcumin have been reported, low absorption and rapid metabolisation limit clinical use. The present study investigated whether irradiation with visible light may enhance the inhibitory effects of low-dosed curcumin on prostate cancer cell growth, proliferation, and metastasis in vitro. DU145 and PC3 cells were incubated with low-dosed curcumin (0.1–0.4 µg/mL) and subsequently irradiated with 1.65 J/cm2 visible light for 5 min. Controls remained untreated and/or non-irradiated. Cell growth, proliferation, apoptosis, adhesion, and chemotaxis were evaluated, as was cell cycle regulating protein expression (CDK, Cyclins), and integrins of the α- and β-family. Curcumin or light alone did not cause any significant effects on tumor growth, proliferation, or metastasis. However, curcumin combined with light irradiation significantly suppressed tumor growth, adhesion, and migration. Phosphorylation of CDK1 decreased and expression of the counter-receptors cyclin A and B was diminished. Integrin α and β subtypes were also reduced, compared to controls. Irradiation distinctly enhances the anti-tumor potential of curcumin in vitro and may hold promise in treating prostate cancer. Full article
(This article belongs to the Special Issue Curcumin in Health and Disease 3.0)
Show Figures

Figure 1

17 pages, 891 KiB  
Review
Soluble CD5 and CD6: Lymphocytic Class I Scavenger Receptors as Immunotherapeutic Agents
by María Velasco-de Andrés, Sergi Casadó-Llombart, Cristina Català, Alejandra Leyton-Pereira, Francisco Lozano and Fernando Aranda
Cells 2020, 9(12), 2589; https://doi.org/10.3390/cells9122589 - 3 Dec 2020
Cited by 25 | Viewed by 5177
Abstract
CD5 and CD6 are closely related signal-transducing class I scavenger receptors mainly expressed on lymphocytes. Both receptors are involved in the modulation of the activation and differentiation cell processes triggered by clonotypic antigen-specific receptors present on T and B cells (TCR and BCR, [...] Read more.
CD5 and CD6 are closely related signal-transducing class I scavenger receptors mainly expressed on lymphocytes. Both receptors are involved in the modulation of the activation and differentiation cell processes triggered by clonotypic antigen-specific receptors present on T and B cells (TCR and BCR, respectively). To serve such a relevant immunomodulatory function, the extracellular region of CD5 and CD6 interacts with soluble and/or cell-bound endogenous counterreceptors but also microbial-associated molecular patterns (MAMPs). Evidence from genetically-modified mouse models indicates that the absence or blockade of CD5- and CD6-mediated signals results in dysregulated immune responses, which may be deleterious or advantageous in some pathological conditions, such as infection, cancer or autoimmunity. Bench to bedside translation from transgenic data is constrained by ethical concerns which can be overcome by exogenous administration of soluble proteins acting as decoy receptors and leading to transient “functional knockdown”. This review gathers information currently available on the therapeutic efficacy of soluble CD5 and CD6 receptor infusion in different experimental models of disease. The existing proof-of-concept warrants the interest of soluble CD5 and CD6 as safe and efficient immunotherapeutic agents in diverse and relevant pathological conditions. Full article
(This article belongs to the Special Issue Scavenger Receptor Structure and Function in Health and Disease)
Show Figures

Figure 1

23 pages, 2837 KiB  
Article
L1CAM as an E-selectin Ligand in Colon Cancer
by Fanny M. Deschepper, Roberta Zoppi, Martina Pirro, Paul J. Hensbergen, Fabio Dall’Olio, Maximillianos Kotsias, Richard A. Gardner, Daniel I.R. Spencer and Paula A. Videira
Int. J. Mol. Sci. 2020, 21(21), 8286; https://doi.org/10.3390/ijms21218286 - 5 Nov 2020
Cited by 12 | Viewed by 5265
Abstract
Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the [...] Read more.
Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation. Full article
(This article belongs to the Special Issue Glycobiology of Cancer)
Show Figures

Graphical abstract

21 pages, 3219 KiB  
Article
Numerical Approach to a Nonlocal Advection-Reaction-Diffusion Model of Cartilage Pattern Formation
by Tilmann Glimm and Jianying Zhang
Math. Comput. Appl. 2020, 25(2), 36; https://doi.org/10.3390/mca25020036 - 19 Jun 2020
Cited by 3 | Viewed by 3522
Abstract
We propose a numerical approach that combines a radial basis function (RBF) meshless approximation with a finite difference discretization to solve a nonlinear system of integro-differential equations. The equations are of advection-reaction-diffusion type modeling the formation of pre-cartilage condensations in embryonic chicken limbs. [...] Read more.
We propose a numerical approach that combines a radial basis function (RBF) meshless approximation with a finite difference discretization to solve a nonlinear system of integro-differential equations. The equations are of advection-reaction-diffusion type modeling the formation of pre-cartilage condensations in embryonic chicken limbs. The computational domain is four dimensional in the sense that the cell density depends continuously on two spatial variables as well as two structure variables, namely membrane-bound counterreceptor densities. The biologically proper Dirichlet boundary conditions imposed in the semi-infinite structure variable region is in favor of a meshless method with Gaussian basis functions. Coupled with WENO5 finite difference spatial discretization and the method of integrating factors, the time integration via method of lines achieves optimal complexity. In addition, the proposed scheme can be extended to similar models with more general boundary conditions. Numerical results are provided to showcase the validity of the scheme. Full article
(This article belongs to the Section Natural Sciences)
Show Figures

Figure 1

17 pages, 6197 KiB  
Article
Growth and Proliferation of Renal Cell Carcinoma Cells Is Blocked by Low Curcumin Concentrations Combined with Visible Light Irradiation
by Jochen Rutz, Sebastian Maxeiner, Eva Juengel, August Bernd, Stefan Kippenberger, Nadja Zöller, Felix K.-H. Chun and Roman A. Blaheta
Int. J. Mol. Sci. 2019, 20(6), 1464; https://doi.org/10.3390/ijms20061464 - 22 Mar 2019
Cited by 25 | Viewed by 3968
Abstract
The anti-cancer properties of curcumin in vitro have been documented. However, its clinical use is limited due to rapid metabolization. Since irradiation of curcumin has been found to increase its anti-cancer effect on several tumor types, this investigation was designed to determine whether [...] Read more.
The anti-cancer properties of curcumin in vitro have been documented. However, its clinical use is limited due to rapid metabolization. Since irradiation of curcumin has been found to increase its anti-cancer effect on several tumor types, this investigation was designed to determine whether irradiation with visible light may enhance the anti-tumor effects of low-dosed curcumin on renal cell carcinoma (RCC) cell growth and proliferation. A498, Caki1, and KTCTL-26 cells were incubated with curcumin (0.1–0.4 µg/mL) and irradiated with 1.65 J/cm2 visible light for 5 min. Controls were exposed to curcumin or light alone or remained untreated. Curcumin plus light, but not curcumin or light exposure alone altered growth, proliferation, and apoptosis of all three RCC tumor cell lines. Cells were arrested in the G0/G1 phase of the cell cycle. Phosphorylated (p) CDK1 and pCDK2, along with their counter-receptors Cyclin B and A decreased, whereas p27 increased. Akt-mTOR-signaling was suppressed, the pro-apoptotic protein Bcl-2 became elevated, and the anti-apoptotic protein Bax diminished. H3 acetylation was elevated when cells were treated with curcumin plus light, pointing to an epigenetic mechanism. The present findings substantiate the potential of combining low curcumin concentrations and light as a new therapeutic concept to increase the efficacy of curcumin in RCC. Full article
(This article belongs to the Special Issue Curcumin in Health and Disease)
Show Figures

Graphical abstract

33 pages, 2321 KiB  
Review
Beyond the Matrix: The Many Non-ECM Ligands for Integrins
by Bryce LaFoya, Jordan A. Munroe, Alison Miyamoto, Michael A. Detweiler, Jacob J. Crow, Tana Gazdik and Allan R. Albig
Int. J. Mol. Sci. 2018, 19(2), 449; https://doi.org/10.3390/ijms19020449 - 2 Feb 2018
Cited by 55 | Viewed by 15175
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is [...] Read more.
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins. Full article
(This article belongs to the Special Issue Extracellular Matrix in Development and Disease)
Show Figures

Graphical abstract

18 pages, 993 KiB  
Review
Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers
by Marco Trinchera, Adele Aronica and Fabio Dall’Olio
Biology 2017, 6(1), 16; https://doi.org/10.3390/biology6010016 - 23 Feb 2017
Cited by 110 | Viewed by 17582
Abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the [...] Read more.
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions. Full article
Show Figures

Figure 1

11 pages, 543 KiB  
Article
Stem Cell Enrichment with Selectin Receptors: Mimicking the pH Environment of Trauma
by Thong M. Cao, Michael J. Mitchell, Jane Liesveld and Michael R. King
Sensors 2013, 13(9), 12516-12526; https://doi.org/10.3390/s130912516 - 17 Sep 2013
Cited by 16 | Viewed by 7919
Abstract
The isolation of hematopoietic stem and progenitor cells (HSPCs) is critical for transplantation therapy and HSPC research, however current isolation techniques can be prohibitively expensive, time-consuming, and produce variable results. Selectin-coated microtubes have shown promise in rapidly isolating HSPCs from human bone marrow, [...] Read more.
The isolation of hematopoietic stem and progenitor cells (HSPCs) is critical for transplantation therapy and HSPC research, however current isolation techniques can be prohibitively expensive, time-consuming, and produce variable results. Selectin-coated microtubes have shown promise in rapidly isolating HSPCs from human bone marrow, but further purification of HSPCs remains a challenge. Herein, a biomimetic device for HSPC isolation is presented to mimic the acidic vascular microenvironment during trauma, which can enhance the binding frequency between L-selectin and its counter-receptor PSGL-1 and HSPCs. Under acidic pH conditions, L-selectin coated microtubes enhanced CD34+ HSPC adhesion, as evidenced by decreased cell rolling velocity and increased rolling flux. Dynamic light scattering was utilized as a novel sensor to confirm an L-selectin conformational change under acidic conditions, as previously predicted by molecular dynamics. These results suggest that mimicking the acidic conditions of trauma can induce a conformational extension of L-selectin, which can be utilized for flow-based, clinical isolation of HSPCs. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Show Figures

28 pages, 847 KiB  
Review
The Third Dimension of Reading the Sugar Code by Lectins: Design of Glycoclusters with Cyclic Scaffolds as Tools with the Aim to Define Correlations between Spatial Presentation and Activity
by Paul V. Murphy, Sabine André and Hans-Joachim Gabius
Molecules 2013, 18(4), 4026-4053; https://doi.org/10.3390/molecules18044026 - 4 Apr 2013
Cited by 51 | Viewed by 8503
Abstract
Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape [...] Read more.
Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape of oligosaccharides as well as spatial aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity that cellular glycans have for endogenous lectins. In order to eventually unravel structure-activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic testing of lectin panels with spatially defined ligand presentations can be considered as a biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at which endogenous lectins select their physiological counterreceptors from the complexity of the cellular glycome. Full article
(This article belongs to the Special Issue Calixarenes and Resorcinarenes)
Show Figures

Figure 1

Back to TopTop