Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = copper microtubes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4419 KiB  
Article
A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim
by Liliya Sh. Altynbaeva, Murat Barsbay, Nurgulim A. Aimanova, Zhanar Ye. Jakupova, Dinara T. Nurpeisova, Maxim V. Zdorovets and Anastassiya A. Mashentseva
Nanomaterials 2022, 12(10), 1724; https://doi.org/10.3390/nano12101724 - 18 May 2022
Cited by 30 | Viewed by 3078 | Correction
Abstract
The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the [...] Read more.
The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the photocatalytic degradation of the fungicide carbendazim (Czm) using composite track-etched membranes (TeMs) in an aqueous solution. Copper(I) oxide (Cu2O) and zinc oxide (ZnO) microtubes (MTs) were prepared using an electroless template deposition technique in porous poly(ethylene terephthalate) (PET) TeMs with nanochannels with a density of 4 × 107 pores/cm−2 and diameter of 385 ± 9 nm to yield Cu2O@PET and ZnO@PET composite membranes, respectively. A mixed Cu2O/ZnO@PET composite was prepared via a two-step deposition process, containing ZnO (87%) and CuZ (13%) as crystalline phases. The structure and composition of all composite membranes were elucidated using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. Under UV–visible light irradiation, the Cu2O/ZnO@PET composite displayed enhanced photocatalytic activity, reaching 98% Czm degradation, higher than Cu2O@PET and ZnO@PET composites. The maximum Czm degradation efficiency from aqueous solution was obtained at an optimal pH of 6 and contact time of 140 min. The effects of various parameters such as temperature, catalyst dosage and sample exposure time on the photocatalytic degradation process were studied. The degradation reaction of Czm was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first order kinetic model. The degradation kinetics of Czm accelerated with increasing temperature, and the activation energy (Ea) levels were calculated as 11.9 kJ/mol, 14.22 kJ/mol and 15.82 kJ/mol for Cu2O/ZnO@PET, ZnO@PET and Cu2O@PET composite membranes, respectively. The reusability of the Cu2O/ZnO@PET catalyst was also investigated at different temperatures for 10 consecutive runs, without any activation or regeneration processes. The Cu2O/ZnO@PET composite exhibited degradation efficiency levels of over 50% at 14 °C and over 30% at 52 °C after 5 consecutive uses. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

19 pages, 4918 KiB  
Article
Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes
by Alyona V. Russakova, Liliya Sh. Altynbaeva, Murat Barsbay, Dmitriy A. Zheltov, Maxim V. Zdorovets and Anastassiya A. Mashentseva
Membranes 2021, 11(2), 116; https://doi.org/10.3390/membranes11020116 - 6 Feb 2021
Cited by 19 | Viewed by 2531
Abstract
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption [...] Read more.
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated. A comparative study of the applicability of the adsorption models of Langmuir, Freundlich, and Dubinin–Radushkevich was carried out in order to describe the experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the above equations were determined. By comparing the regression coefficients R2, it was shown that the Freundlich model describes the experimental data on the adsorption of arsenic through the studied samples better than others. Free energy of As(III) adsorption on the samples was determined using the Dubinin–Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite indicates that the interaction between the adsorbate and the composite is based on chemisorption. Full article
(This article belongs to the Special Issue Track-etched Membranes: Formation Features and Applications)
Show Figures

Figure 1

12 pages, 6919 KiB  
Article
Fouling of Polymeric Hollow Fiber Heat Exchangers by Air Dust
by Ilya Astrouski, Miroslav Raudensky, Tereza Kudelova and Tereza Kroulikova
Materials 2020, 13(21), 4931; https://doi.org/10.3390/ma13214931 - 2 Nov 2020
Cited by 13 | Viewed by 2568
Abstract
Currently, liquid-to-gas heat exchangers in buildings, domestic appliances and the automotive industry are mainly made of copper and aluminum. Using plastic instead of metal can be very beneficial from an economic and environmental point of view. However, it is required that a successful [...] Read more.
Currently, liquid-to-gas heat exchangers in buildings, domestic appliances and the automotive industry are mainly made of copper and aluminum. Using plastic instead of metal can be very beneficial from an economic and environmental point of view. However, it is required that a successful plastic design meets all the requirements of metal heat exchangers. The polymeric hollow fiber heat exchanger studied in this work is completive to common metal finned heat exchangers. Due to its unique design (the use of thousands of thin-walled microtubes connected in parallel), it achieves a high level of compactness and thermal performance, low pressure drops and high operation pressure. This paper focuses on an important aspect of heat exchanger operation—its fouling in conditions relevant to building and domestic application. In heating, ventilation and air conditioning (HVAC) and automotive and domestic appliances, outdoor and domestic dust are the main source of fouling. In this study, a heat exchanger made of polymeric hollow fibers was tested in conditions typical for indoor HVAC equipment, namely with the 20 °C room air flowing through the hot water coil (water inlet 50 °C) with air velocity of 1.5 m/s. ASHRAE test dust was used as a foulant to model domestic dust. A polymeric heat exchanger with fibers with an outer diameter of 0.6 mm (1960 fibers arranged into 14 layers in total) and a heat transfer area of 0.89 m2 was tested. It was proven that the smooth polypropylene surface of hollow fibers has a favorable antifouling characteristic. Fouling evolution on the metallic heat transfer surfaces of a similar surface density was about twice as quick as on the plastic one. The experimental results on the plastic heat exchanger showed a 38% decrease in the heat transfer rate and a 91% increase in pressure drops after eighteen days of the experiment when a total of 4000 g/m2 of the test dust had been injected into the air duct. The decrease in the heat transfer rate of the heat exchanger was influenced mainly by clogging in the frontal area because the first layers were fouled significantly more than the deeper layers. Full article
Show Figures

Figure 1

26 pages, 8235 KiB  
Article
Deformation Behavior Causing Excessive Thinning of Outer Diameter of Micro Metal Tubes in Hollow Sinking
by Takuma Kishimoto, Hayate Sakaguchi, Saki Suematsu, Kenichi Tashima, Satoshi Kajino, Shiori Gondo and Shinsuke Suzuki
Metals 2020, 10(10), 1315; https://doi.org/10.3390/met10101315 - 1 Oct 2020
Cited by 10 | Viewed by 3082
Abstract
The deformation behavior of microtubes during hollow sinking was investigated to clarify the mechanism of the excessive thinning of their outer diameters. Stainless-steel, copper, and aluminum alloy tubes were drawn without an inner tool to evaluate the effect of Lankford values on outer [...] Read more.
The deformation behavior of microtubes during hollow sinking was investigated to clarify the mechanism of the excessive thinning of their outer diameters. Stainless-steel, copper, and aluminum alloy tubes were drawn without an inner tool to evaluate the effect of Lankford values on outer diameter reduction. Drawing stress and stress-strain curves were obtained to evaluate the yielding behavior during hollow sinking. The observed yielding behavior indicated that the final outer diameter of the drawn tube was always smaller than the die diameter due to the uniaxial tensile deformation starting from the die approach end even though the drawing stress was in the elastic range. The results of a loading-unloading tensile test demonstrated that the strain remained even after unloading. Therefore, the outer diameter is considered to become smaller than the die diameter during hollow sinking due to microscopic yielding at any Lankford value. Furthermore, the outer diameter becomes smaller than the die diameter as the Lankford value increases, as theorized. As the drawing stress decreases or the apparent elastic modulus of the stress-strain curve increases, the outer diameter seems to approach the die diameter during unloading, which is caused by the elastic recovery outside the microscopic yielding region. Full article
(This article belongs to the Special Issue Tube and Sheet Metal Forming Processes and Applications)
Show Figures

Figure 1

21 pages, 5909 KiB  
Article
Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III)
by Anastassiya A. Mashentseva, Murat Barsbay, Maxim V. Zdorovets, Dmitriy A. Zheltov and Olgun Güven
Nanomaterials 2020, 10(8), 1552; https://doi.org/10.3390/nano10081552 - 7 Aug 2020
Cited by 30 | Viewed by 3416
Abstract
One of the promising applications of nanomaterials is to use them as catalysts and sorbents to remove toxic pollutants such as nitroaromatic compounds and heavy metal ions for environmental protection. This work reports the synthesis of Cu/CuO-deposited composite track-etched membranes through low-temperature annealing [...] Read more.
One of the promising applications of nanomaterials is to use them as catalysts and sorbents to remove toxic pollutants such as nitroaromatic compounds and heavy metal ions for environmental protection. This work reports the synthesis of Cu/CuO-deposited composite track-etched membranes through low-temperature annealing and their application in catalysis and sorption. The synthesized Cu/CuO/poly(ethylene terephthalate) (PET) composites presented efficient catalytic activity with high conversion yield in the reduction of nitro aryl compounds to their corresponding amino derivatives. It has been found that increasing the time of annealing raises the ratio of the copper(II) oxide (CuO) tenorite phase in the structure, which leads to a significant increase in the catalytic activity of the composites. The samples presented maximum catalytic activity after 5 h of annealing, where the ratio of CuO phase and the degree of crystallinity were 64.3% and 62.7%, respectively. The catalytic activity of pristine and annealed composites was tested in the reduction of 4-nitroaniline and was shown to remain practically unchanged for five consecutive test cycles. Composites annealed at 140 °C were also tested for their capacity to absorb arsenic(III) ions in cross-flow mode. It was observed that the sorption capacity of composite membranes increased by 48.7% compared to the pristine sample and reached its maximum after 10 h of annealing, then gradually decreased by 24% with further annealing. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Wastewater Treatment)
Show Figures

Graphical abstract

23 pages, 18192 KiB  
Article
Material Deformation Behavior in T-Shape Hydroforming of Metal Microtubes
by Hajime Yasui, Shoichiro Yoshihara, Shigeki Mori, Kazuo Tada and Ken-ichi Manabe
Metals 2020, 10(2), 199; https://doi.org/10.3390/met10020199 - 30 Jan 2020
Cited by 7 | Viewed by 3946
Abstract
In this study, the material behavior in the T-shape microtube hydroforming (MTHF) of pure copper and stainless-steel SUS304 microtubes with an outer diameter of 500 µm and wall thickness of 100 µm was examined experimentally and numerically. This paper elucidates the basic deformation [...] Read more.
In this study, the material behavior in the T-shape microtube hydroforming (MTHF) of pure copper and stainless-steel SUS304 microtubes with an outer diameter of 500 µm and wall thickness of 100 µm was examined experimentally and numerically. This paper elucidates the basic deformation characteristics, the forming defects, and the forming limit as well as the effects of lubrication/friction and tube length. The hydroformability (bulge height) of the SUS304 microtube was shown to be higher than that of the copper microtube because of the high buckling resistance of SUS304. Good lubrication experimentally led to the high hydroformability of T-shape forming. The length of the microtube significantly affects its hydroformability. Friction resistance increases with increasing tube length and restricts the flow of the microtube material into the die cavity. By comparing the T-shape and cross-shape MHTF characteristics, we verified the hydroformability of the T-shape microtube to be superior to that of the cross-shape microtube theoretically and experimentally. In addition, the process window for T-shape MTHF had a narrower “success” area and wider buckling and folding regions than that for cross-shape MTHF. Furthermore, conventional finite element (FE) modeling without consideration of the grains was valid for MTHF processes owing to the many grains in the thickness direction. Full article
(This article belongs to the Special Issue Metal Micro-forming)
Show Figures

Figure 1

Back to TopTop