Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = copRS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9250 KiB  
Article
Improving the Electrochemical and Electrochromic Properties of Copolymerized 3,4-Ethylenedioxythiophene with Pyrene
by Xiang Wang, Haiyun Jiang, Muling Gan, Jun Zhang, Ruomei Wu, Weili Zhang, Ziyi Wang, Minxi Guo and Yangfan Mu
Polymers 2025, 17(1), 69; https://doi.org/10.3390/polym17010069 - 30 Dec 2024
Cited by 1 | Viewed by 902
Abstract
Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO4 [...] Read more.
Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO4/PC (0.1 M)). The homopolymer and copolymer films were analyzed by Fourier transform infrared spectroscopy (FT-IR), color-coordinate and colorimetric methods, cyclic voltammetry (CV), spectroelectrochemistry (SEC), and UV–visible spectroscopy (UV-Vis). Homopolymer poly(3,4-ethylenedioxythiophene) (PEDOT) and the P(EDOT-co-Pr) copolymer were investigated, which included examining their colorimetric, electrochemical, and electrochromic characteristics. The color shifts resulting from redox reactions of the polymers were also observed. The copolymers with different monomer concentrations achieved multicolor shifts, such as light purple, dark blue, dark red, green, and earthy yellow. Moreover, P(EDOT-co-Pr) had a small optical bandgap (1.74–1.83 eV), excellent optical contrast (31.68–45.96%), and high coloring efficiency (350–507 cm2 C−1). In particular, P(EDOT1-co-Pr3) exhibited outstanding cycling stability, retaining 91% of its initial optical contrast after cycling for 10,000 s, and it is expected to be a promising candidate copolymer for electrochromic applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 4077 KiB  
Article
Investigating MerR’s Selectivity: The Crosstalk Between Cadmium and Copper Under Elevated Stress Conditions
by Anne Soisig Steunou, Anne Durand, Sylviane Liotenberg, Marie-Line Bourbon and Soufian Ouchane
Biomolecules 2024, 14(11), 1429; https://doi.org/10.3390/biom14111429 - 9 Nov 2024
Cited by 1 | Viewed by 1184
Abstract
Bacteria respond to metal pollution through sensors that control the uptake and the detoxification machineries. Specificity in metal recognition is therefore a prerequisite for triggering the appropriate response, particularly when facing a mixture of metals. In response to Cu+, the purple [...] Read more.
Bacteria respond to metal pollution through sensors that control the uptake and the detoxification machineries. Specificity in metal recognition is therefore a prerequisite for triggering the appropriate response, particularly when facing a mixture of metals. In response to Cu+, the purple bacterium Rubrivivax gelatinosus induces the efflux Cu+-ATPase CopA by the Cu+ regulator CopR. However, genetic analyses have suggested the presence of additional regulators. Here, we show that CadR, the Cd2+ sensor, is involved in Cd2+ and Cu+ tolerance and demonstrate that CopR and CadR share common target genes. Interestingly, expression of the Cu+ detoxification and efflux (CopI/CopA) system was induced by Cd2+ and downregulated in the double mutant copRcadR. This double mutant was more sensitive to low Cu+ concentration than the single copR mutant, and accumulation of coproporphyrin III pointed to a significantly decreased expression of CopA. Furthermore, analyses of Cd2+ toxicity in the cadR mutant suggested that although CopR is Cu+ selective, CopR is involved in Cd2+ response since the addition of Cu+ alleviates Cd2+ toxicity. Based on our current knowledge of metal transport across the inner membrane, Cd2+ and Cu+ do not share common efflux routes nor do they share common regulators. Nevertheless, the crosstalk between Cd2+ and Cu+ tolerance systems is demonstrated in the present study. The modulation of Cu+ detoxification by a Cd2+ regulator in vivo places emphasis on the relaxed selectivity, under elevated metal concentration, in MerR regulators. Full article
(This article belongs to the Special Issue Recent Insights into Metal Binding Proteins)
Show Figures

Figure 1

15 pages, 5233 KiB  
Article
Enhancing Flame Retardancy in Epoxy Resin with Clever Self-Assembly Method for Optimizing Interface Interaction via Well-Dispersed Cerium Oxide on Piperazine Pyrophosphate
by Jiajun Zhao, Zhengqian Wu, Yutong Hong, Hongyu Li, Junbo Qian, Kailiang Wu and Yan Xia
Fire 2024, 7(11), 372; https://doi.org/10.3390/fire7110372 - 23 Oct 2024
Viewed by 1643
Abstract
Developing flame-retardant epoxy resins (EPs) is essential to broaden their industrial applications, as their inherent flammability restricts their widespread use. In this study, commercial cerium oxide (CeO2) nanoparticles were modified with oleic acid and successfully assembled onto the surface of pyrophosphate [...] Read more.
Developing flame-retardant epoxy resins (EPs) is essential to broaden their industrial applications, as their inherent flammability restricts their widespread use. In this study, commercial cerium oxide (CeO2) nanoparticles were modified with oleic acid and successfully assembled onto the surface of pyrophosphate piperazine (PAPP) through a simple solvophobic effect, constructing an integrated superstructure flame retardant, CeO2@PAPP, with enhanced performance integration. Compared to traditional simple blends, the EP composite with 10 wt% CeO2@PAPP displayed superior flame retardancy, thanks to the more subtle synergistic effects between flame retardant components and their favorable interface interactions. The EP composite achieved a UL-94 V-0 rating and increased the limiting oxygen index (LOI) to 34.2%. Significant reductions of 56.3% in peak heat release rate (PHRR) and 38.2% in total heat release (THR) were observed. Furthermore, total smoke release (TSR), carbon monoxide yield (COPR), and carbon dioxide yield (CO2PR) decreased by 52.2%, 50.2%, and 67.3%, respectively. Through comprehensive and detailed characterization, it was discovered that the assembled integrated CeO2@PAPP flame retardant can perform better in both the gas phase and condensed phase, resulting in superior flame-retardant properties. This study offers an effective strategy for developing highly flame-retardant EPs, thereby expanding their potential applications across various industries. Full article
Show Figures

Figure 1

12 pages, 2859 KiB  
Article
Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil
by Mingtao Huang, Guoyu Ding, Xianghua Yan, Pinhua Rao, Xingrun Wang, Xiaoguang Meng and Qiantao Shi
Int. J. Environ. Res. Public Health 2022, 19(15), 9721; https://doi.org/10.3390/ijerph19159721 - 7 Aug 2022
Cited by 6 | Viewed by 2497
Abstract
The alkali digestion pretreatment method in the United States Environmental Protection Agency (USEPA) Method 3060A could underestimate the content of Cr(VI) in Cr-contaminated soils, especially for soils mixed with chromite ore processing residue (COPR), which leads to a misjudgment of the Cr(VI) level [...] Read more.
The alkali digestion pretreatment method in the United States Environmental Protection Agency (USEPA) Method 3060A could underestimate the content of Cr(VI) in Cr-contaminated soils, especially for soils mixed with chromite ore processing residue (COPR), which leads to a misjudgment of the Cr(VI) level in soils after remediation, causing secondary pollution to the environment. In this study, a new pretreatment method to analyze Cr(VI) concentration in contaminated soils was established. The impacts of soil quality, particle size, alkali digestion time and the rounds of alkali digestion on Cr(VI) detection in contaminated soils was explored and the alkali digestion method was optimized. Compared with USEPA Method 3060A, the alkaline digestion time was prolonged to 6 h and multiple alkali digestion was employed until the amount of Cr(VI) in the last extraction was less than 10% of the total amount of Cr(VI). Because Cr(VI) in COPR is usually embedded in the mineral phase structure, the hydration products were dissolved and Cr(VI) was released gradually during the alkaline digestion process. The amount of Cr(VI) detected showed high correlation coefficients with the percentage of F1 (mild acid-soluble fraction), F2 (reducible fraction) and F4 (residual fraction). The Cr(VI) contents detected by the new alkaline digestion method and USEPA Method 3060A showed significant differences for soil samples mixed with COPR due to their high percentage of residual fraction. This new pretreatment method could quantify more than 90% of Cr(VI) in Cr-contaminated soils, especially those mixed with COPR, which proved to be a promising method for Cr(VI) analysis in soils, before and after remediation. Full article
(This article belongs to the Special Issue Assessment and Treatment of Soil and Groundwater Pollution)
Show Figures

Figure 1

15 pages, 2749 KiB  
Article
The Utilization of Alkali-Activated Lead–Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization
by Lin Yu, Lu Fang, Pengpeng Zhang, Shujie Zhao, Binquan Jiao and Dongwei Li
Int. J. Environ. Res. Public Health 2021, 18(19), 9960; https://doi.org/10.3390/ijerph18199960 - 22 Sep 2021
Cited by 16 | Viewed by 2706
Abstract
Lead–zinc smelting slag (LZSS) is regarded as a hazardous waste containing heavy metals that poses a significant threat to the environment. LZSS is rich in aluminosilicate, which has the potential to prepare alkali-activated materials and solidify hazardous waste, realizing hazardous waste cotreatment. In [...] Read more.
Lead–zinc smelting slag (LZSS) is regarded as a hazardous waste containing heavy metals that poses a significant threat to the environment. LZSS is rich in aluminosilicate, which has the potential to prepare alkali-activated materials and solidify hazardous waste, realizing hazardous waste cotreatment. In this study, the experiment included two parts; i.e., the preparation of alkali-activated LZSS (pure smelting slag) and chromite ore processing residue (COPR) solidification/stabilization. Single-factor and orthogonal experiments were carried out that aimed to explore the effects of various parameters (alkali solid content, water glass modulus, liquid–solid ratio, and initial curing temperature) for alkali-activated LZSS. Additionally, compressive strength and leaching toxicity were the indexes used to evaluate the performance of the solidified bodies containing COPR. As a result, the highest compressive strength of alkali-activated LZSS reached 84.49 MPa, and when 40% COPR was added, the strength decreased to 1.42 MPa. However, the leaching concentrations of Zn and Cr from all the solidified bodies were far below the critical limits (US EPA Method 1311 and China GB5085.3-2007). Heavy-metal ions in LZSS and COPR were immobilized successfully by chemical and physical means, which was detected by analyses including environmental scanning electron microscopy with energy-dispersive spectrometry, Fourier transform infrared spectrometry, and X-ray diffraction. Full article
Show Figures

Figure 1

26 pages, 56241 KiB  
Article
Evaluating the Performance of Water Chillers Equipped with Constant- or Variable-Frequency Centrifugal Compressors
by Chih-Neng Hsu and Shih-Hao Wang
Processes 2021, 9(6), 1039; https://doi.org/10.3390/pr9061039 - 14 Jun 2021
Cited by 9 | Viewed by 8630
Abstract
The cooling coefficient of performance (COPR) and energy efficiency ratio (EER) of refrigerant R-134a compressors (single- and double-compressors) with different refrigerant tonnage (200, 250, 300, 380, 500, and 700 RT) for centrifugal and Maglev centrifugal compressors change with different operating performance [...] Read more.
The cooling coefficient of performance (COPR) and energy efficiency ratio (EER) of refrigerant R-134a compressors (single- and double-compressors) with different refrigerant tonnage (200, 250, 300, 380, 500, and 700 RT) for centrifugal and Maglev centrifugal compressors change with different operating performance load percentages (10–100%), and constant-frequency and variable-frequency operation, resulting in performance differences. In particular, a water chiller can have a fixed cooling water inlet temperature of 32 °C and a variable cooling water inlet temperature between 18.33 °C and 32 °C. According to the actual test results, the commercial performance code program and parameter table of the water chiller were established. Based on the performance matching of different load chillers, the on-site load capacity was analyzed and the effective water chiller performance and model matching were determined as the best choice for the tonR number of the deicing machine and unit matching, providing a reference for a future large water chiller that cannot be used on site for a single unit tonR. To achieve energy-saving benefits, different types of compressors, different refrigeration tonR operation, constant-frequency unit and variable-frequency unit alternate operation, and different operating performance load percentage operation can be allocated. Finally, the results show that, when the cooling water inlet temperature is fixed, the Maglev variable-frequency centrifugal compressor water chiller is better than the constant-frequency centrifugal water chiller, and also better than the variable-frequency centrifugal water chiller. The larger the freezing tonR of the variable-frequency centrifugal water chiller, the smaller the difference between COPR and EER. When the cooling water inlet temperature changes, the Maglev variable-frequency centrifugal water chiller is better than the constant-frequency centrifugal water chiller, and it is also better than the variable-frequency centrifugal water chiller. The larger the freezing tonR of the variable-frequency centrifugal water chiller, the smaller the difference between COPR and EER. Moreover, the operating performance of the constant-frequency centrifugal water chiller is between 60% and 90%, which can maintain relatively high COPR and EER values. The operating performance of the variable-frequency centrifugal water chiller is between 40% and 70%, which can maintain relatively high COPR and EER values. Compared with the constant-frequency and variable-frequency, the Maglev variable-frequency centrifugal water chiller can maintain higher COPR and EER values when the operating performance is between 10% and 100%. When the operating performance is between 10% and 70%, it can maintain very high COPR and EER values. When the water chiller is selected in the field, the energy-saving of COPR and EER will be given priority. Therefore, the load capacity can be used to effectively manage the water chiller performance and model selection, so that the operation performance can reach the best percentage and energy saving can be achieved. Full article
Show Figures

Figure 1

23 pages, 2038 KiB  
Review
Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa
by Lukas Hofmann, Melanie Hirsch and Sharon Ruthstein
Int. J. Mol. Sci. 2021, 22(4), 2050; https://doi.org/10.3390/ijms22042050 - 19 Feb 2021
Cited by 23 | Viewed by 6884
Abstract
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health [...] Read more.
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens. Full article
Show Figures

Figure 1

13 pages, 526 KiB  
Article
Gender Differences in Postural Stability among 13-Year-Old Alpine Skiers
by Agnieszka D. Jastrzębska
Int. J. Environ. Res. Public Health 2020, 17(11), 3859; https://doi.org/10.3390/ijerph17113859 - 29 May 2020
Cited by 15 | Viewed by 3666
Abstract
This experiment examined changes in body sway after Wingate test (WAnT) in 19 adolescents practicing alpine skiing, subjected to the same type of training load for 4–5 years (10 girls and nine boys). The postural examinations were performed with eyes open (EO), eyes [...] Read more.
This experiment examined changes in body sway after Wingate test (WAnT) in 19 adolescents practicing alpine skiing, subjected to the same type of training load for 4–5 years (10 girls and nine boys). The postural examinations were performed with eyes open (EO), eyes closed (EC), and sway reverenced vision (SRV) in the medial-lateral (ML) and anterior-posterior (AP) planes. The displacement of center of foot pressure (CoP), range of sway (RS), mean sway velocity (MV), way length, and surface area were measured in bipedal upright stance before and after the WAnT to assess the influence of fatigue on postural balance. There were no significant differences in WAnT parameters between girls and boys. Relative peak power (RPP), relative total work (RWtot) were (girls vs. boys) 8.89 ± 0.70 vs. 9.57 ± 1.22 W/kg, p < 0.05 and 227.91 ± 14.98 vs. 243.22 ± 30.24 W/kg, p < 0.05 respectively. The fatigue index (FI) was also on similar level in both genders; however, blood lactate concentration (BLa) was significantly higher in boys (10.35 ± 1.16 mM) than in girls (8.67 ± 1.35 mM) p = 0.007. In the EO examination, statistically significant differences between resting and fatigue conditions in the whole group and after the division into girls and boys were found. In fatigue conditions, significant gender differences were noted for measurements in the ML plane (sway path and RS) and RS in the AP plane. Comparison of the three conditions shows differences between EO vs. EC and SRV in AP plane measured parameters, and for RS in ML plane in rest condition in girls. The strong correlations between FI and CoP parameters mainly in ML plane in the whole group for all examination conditions were noted. By genders, mainly RS in ML plane strongly correlates with FI (r > 0.7). No correlation was found between BLa and CoP parameters (p > 0.06). The presented results indicate that subjecting adolescents of both genders to the same training may reduce gender differences in the postural balance ability at rest but not in fatigue conditions and that girls are significantly superior in postural balance in the ML plane than boys. It was also shown that too little or too much information may be destructive to postural balance in young adolescents. Full article
Show Figures

Figure 1

16 pages, 3184 KiB  
Article
Essential Gene Clusters Involved in Copper Tolerance Identified in Acinetobacter baumannii Clinical and Environmental Isolates
by Rapee Thummeepak, Renuka Pooalai, Christian Harrison, Lucy Gannon, Aunchalee Thanwisai, Narisara Chantratita, Andrew D. Millard and Sutthirat Sitthisak
Pathogens 2020, 9(1), 60; https://doi.org/10.3390/pathogens9010060 - 15 Jan 2020
Cited by 22 | Viewed by 5209
Abstract
Copper is widely used as antimicrobial in agriculture and medicine. Copper tolerance mechanisms of pathogenic bacteria have been proven to be required for both copper tolerance and survival during bacterial infections. Here, we determined both copper-tolerant phenotype and genotype in A. baumannii originated [...] Read more.
Copper is widely used as antimicrobial in agriculture and medicine. Copper tolerance mechanisms of pathogenic bacteria have been proven to be required for both copper tolerance and survival during bacterial infections. Here, we determined both copper-tolerant phenotype and genotype in A. baumannii originated from clinical and environmental samples. Using copper susceptibility testing, copper-tolerant A. baumannii could be found in both clinical and environmental isolates. Genotypic study revealed that representative copper-related genes of the cluster A (cueR), B (pcoAB), and D (oprC) were detected in all isolates, while copRS of cluster C was detected in only copper-tolerant A. baumannii isolates. Moreover, we found that copper-tolerant phenotype was associated with amikacin resistance, while the presence of copRS was statistically associated with blaNDM-1. We chose the A. baumannii strain AB003 as a representative of copper-tolerant isolate to characterize the effect of copper treatment on external morphology as well as on genes responsible for copper tolerance. The morphological features and survival of A. baumannii AB003 were affected by its exposure to copper, while whole-genome sequencing and analysis showed that it carried fourteen copper-related genes located on four clusters, and cluster C of AB003 was found to be embedded on genomic island G08. Transcriptional analysis of fourteen copper-related genes identified in AB003 revealed that copper treatment induced the expressions of genes of clusters A, B, and D at the micromolar level, while genes of cluster C were over-expressed at the millimolar levels of copper. This study showed that both clinical and environmental A. baumannii isolates have the ability to tolerate copper and carried numerous copper tolerance determinants including intrinsic copper tolerance (clusters A, B, and D) and acquired copper tolerance (cluster C) that could respond to copper toxicity. Our evidence suggests that we need to reconsider the use of copper in hospitals and other medical environments to prevent the selection and spread of copper-tolerant organisms. Full article
Show Figures

Figure 1

20 pages, 6126 KiB  
Article
Artificial Intelligence Modelling Approach for the Prediction of CO-Rich Hydrogen Production Rate from Methane Dry Reforming
by Bamidele Victor Ayodele, Siti Indati Mustapa, May Ali Alsaffar and Chin Kui Cheng
Catalysts 2019, 9(9), 738; https://doi.org/10.3390/catal9090738 - 31 Aug 2019
Cited by 30 | Viewed by 4896
Abstract
This study investigates the applicability of the Leven–Marquardt algorithm, Bayesian regularization, and a scaled conjugate gradient algorithm as training algorithms for an artificial neural network (ANN) predictively modeling the rate of CO and H2 production by methane dry reforming over a Co/Pr [...] Read more.
This study investigates the applicability of the Leven–Marquardt algorithm, Bayesian regularization, and a scaled conjugate gradient algorithm as training algorithms for an artificial neural network (ANN) predictively modeling the rate of CO and H2 production by methane dry reforming over a Co/Pr2O3 catalyst. The dataset employed for the ANN modeling was obtained using a central composite experimental design. The input parameters consisted of CH4 partial pressure, CO2 partial pressure, and reaction temperature, while the target parameters included the rate of CO and H2 production. A neural network architecture of 3 13 2, 3 15 2, and 3 15 2 representing the input layer, hidden neuron layer, and target (output) layer were employed for the Leven–Marquardt, Bayesian regularization, and scaled conjugate gradient training algorithms, respectively. The ANN training with each of the algorithms resulted in an accurate prediction of the rate of CO and H2 production. The best prediction was, however, obtained using the Bayesian regularization algorithm with the lowest standard error of estimates (SEE). The high values of coefficient of determination (R2 > 0.9) obtained from the parity plots are an indication that the predicted rates of CO and H2 production were strongly correlated with the observed values. Full article
(This article belongs to the Special Issue Catalysis for the Production of Sustainable Fuels and Chemicals)
Show Figures

Figure 1

11 pages, 3190 KiB  
Article
LDS Realization of High-Q SIW Millimeter Wave Filters with Cyclo-Olefin Polymers
by Adrien Glise, Yves Quéré, Azar Maalouf, Eric Rius, Vincent Castel, Vincent Laur and Rose Marie Sauvage
Appl. Sci. 2018, 8(11), 2230; https://doi.org/10.3390/app8112230 - 13 Nov 2018
Cited by 5 | Viewed by 4446
Abstract
In this paper, we present narrow-band substrate integrated waveguide (SIW) millimeter wave band-pass filters, designed using cyclo-olefin polymers (COP). The structures were molded, drilled, and metalized with a laser direct structuring (LDS) process. COP are a type of thermoplastic with low dielectric losses [...] Read more.
In this paper, we present narrow-band substrate integrated waveguide (SIW) millimeter wave band-pass filters, designed using cyclo-olefin polymers (COP). The structures were molded, drilled, and metalized with a laser direct structuring (LDS) process. COP are a type of thermoplastic with low dielectric losses in the millimeter waveband, typically 7.5 × 10−4 at 40 GHz for the COP RS420-LDS from Zeon®. The body of the filter was realized using a molding process that facilitates the combination of thin 50 Ω microstrip access lines with high thickness microwave cavities through 3D transitions, thus making high quality factors attainable. The simulations and experimental results are presented and discussed. Full article
(This article belongs to the Special Issue Substrate Integrated Waveguide (SIW) and Its Applications)
Show Figures

Figure 1

15 pages, 2359 KiB  
Article
OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa
by Verena Ducret, Manuel R. Gonzalez, Tiziana Scrignari and Karl Perron
Genes 2016, 7(10), 82; https://doi.org/10.3390/genes7100082 - 3 Oct 2016
Cited by 16 | Viewed by 8464
Abstract
The metal‐specific CzcRS two‐component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the [...] Read more.
The metal‐specific CzcRS two‐component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq‐dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two‐component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment‐sensing and antibiotic resistance in P. aeruginosa. Full article
(This article belongs to the Special Issue Virulence Gene Regulation in Bacteria)
Show Figures

Figure 1

23 pages, 2436 KiB  
Article
Characterization and Structure Prediction of Partial Length Protein Sequences of pcoA, pcoR and chrB Genes from Heavy Metal Resistant Bacteria from the Klip River, South Africa
by Patience Chihomvu, Peter Stegmann and Michael Pillay
Int. J. Mol. Sci. 2015, 16(4), 7352-7374; https://doi.org/10.3390/ijms16047352 - 1 Apr 2015
Cited by 36 | Viewed by 7841
Abstract
The Klip River has suffered from severe anthropogenic effects from industrial activities such as mining. Long-term exposure to heavy metal pollution has led to the development of heavy metal resistant strains of Pseudomonas sp. KR23, Lysinibacillus sp. KR25, and E. coli KR29. The [...] Read more.
The Klip River has suffered from severe anthropogenic effects from industrial activities such as mining. Long-term exposure to heavy metal pollution has led to the development of heavy metal resistant strains of Pseudomonas sp. KR23, Lysinibacillus sp. KR25, and E. coli KR29. The objectives of this study were to characterize the genetics of copper and chromate resistance of the isolates. Copper and chromate resistance determinants were cloned and sequenced. Open reading frames (ORFs) related to the genes CopA and CopR were identified in E. coli KR29, PcoA in Lysinibacillus sp. KR25 and none related to chromate resistance were detected. The 3D-models predicted by I-TASSER disclose that the PcoA proteins consist of β-sheets, which form a part of the cupredoxin domain of the CopA copper resistance family of genes. The model for PcoR_29 revealed the presence of a helix turn helix; this forms part of a DNA binding protein, which is part of a heavy metal transcriptional regulator. The bacterial strains were cured using ethidium bromide. The genes encoding for heavy metal resistance and antibiotic resistance were found to be located on the chromosome for both Pseudomonas sp. (KR23) and E. coli (KR29). For Lysinibacillus (KR25) the heavy metal resistance determinants are suspected to be located on a mobile genetic element, which was not detected using gel electrophoresis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop