Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = continuous electrowetting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 17404 KB  
Article
Reconfigurable Orbital Electrowetting for Controllable Droplet Transport on Slippery Surfaces
by Jiayao Wu, Huafei Li, Yifan Zhou, Ge Gao, Teng Zhou, Ziyu Wang and Huai Zheng
Micromachines 2025, 16(6), 618; https://doi.org/10.3390/mi16060618 - 25 May 2025
Viewed by 802
Abstract
The controllable transport of droplets on solid surfaces is crucial for many applications, from water harvesting to bio-analysis. Herein, we propose a novel droplet transport controlling method, reconfigurable orbital electrowetting (ROEW) on inclined slippery liquid-infused porous surfaces (SLIPS), which enables controllable transport and [...] Read more.
The controllable transport of droplets on solid surfaces is crucial for many applications, from water harvesting to bio-analysis. Herein, we propose a novel droplet transport controlling method, reconfigurable orbital electrowetting (ROEW) on inclined slippery liquid-infused porous surfaces (SLIPS), which enables controllable transport and dynamic handling of droplets by non-contact reconfiguration of orbital electrodes. The flexible reconfigurability is attributed to the non-contact wettability modulation and reversibly deformable flexible electrodes. ROEW graphically customizes stable wettability pathways by real-time and non-contact printing of charge-orbit patterns on SLIPS to support the continuous transport of droplets. Benefiting from the fast erase-writability of charges and the movability of non-contact electrodes, ROEW enables reconfiguration of the wetting pathways by designing electrode shapes and dynamically switching electrode configurations, achieving controllable transport of various pathways and dynamic handling of droplet sorting and mixing. ROEW provides a new approach for reconfigurable, electrode-free arrays and reusable microfluidics. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering, 2nd Edition)
Show Figures

Figure 1

22 pages, 7993 KB  
Article
Modeling Electrowetting on Dielectric for Novel Droplet-Based Microactuation
by Behzad Parsi, Max R. Gunn, Jacob V. Winters, Daniel Maynes and Nathan B. Crane
Micromachines 2024, 15(12), 1491; https://doi.org/10.3390/mi15121491 - 13 Dec 2024
Cited by 1 | Viewed by 1683
Abstract
Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and [...] Read more.
Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and allow real-time adjustments to frequency and bandwidth. In this paper, a method is introduced to actuate a panel using EWOD forces. In the EWOD system, the velocity of the plate increases by maximizing the actuation force, minimizing the moving mass (droplets and metalized plate), and reducing resistance (contact line drag, fluid drag). However, some of these are competing factors. For instance, the actuation force can be increased by increasing the number of droplets, but this also increases the inertia and the drag force. An analytical model of EWOD actuation is presented to understand system performance tradeoffs. The model is validated with an EWOD experiment, and the data demonstrate less than a 7.8% error between the measured and predicted maximum plate velocities for different voltage inputs. In addition, this study presents a 3D numerical FEM model to analyze the velocity profile and viscous force in the thin droplets, focusing on variations along the droplet’s height, which cannot be captured experimentally. The main advantage of the proposed system over previous works is the simple 2D manufacturing process, which allows embedding metalized plates and RF circuit boards, in addition to being compact, portable, and low-cost. In addition, the proposed method does not have any mechanical components, which can increase the system’s reliability in a harsh environment. Full article
(This article belongs to the Special Issue Recent Advances in Droplet Microfluidics)
Show Figures

Figure 1

12 pages, 2871 KB  
Article
Thin-Film Transistor Digital Microfluidics Circuit Design with Capacitance-Based Droplet Sensing
by Shengzhe Jiang, Chang Li, Jiping Du, Dongping Wang, Hanbin Ma, Jun Yu and Arokia Nathan
Sensors 2024, 24(15), 4789; https://doi.org/10.3390/s24154789 - 24 Jul 2024
Cited by 1 | Viewed by 1953
Abstract
With the continuous expansion of pixel arrays in digital microfluidics (DMF) chips, precise droplet control has emerged as a critical issue requiring detailed consideration. This paper proposes a novel capacitance-based droplet sensing system for thin-film transistor DMF. The proposed circuit features a distinctive [...] Read more.
With the continuous expansion of pixel arrays in digital microfluidics (DMF) chips, precise droplet control has emerged as a critical issue requiring detailed consideration. This paper proposes a novel capacitance-based droplet sensing system for thin-film transistor DMF. The proposed circuit features a distinctive inner and outer dual-pixel electrode structure, integrating droplet driving and sensing functionalities. Discharge occurs exclusively at the inner electrode during droplet sensing, effectively addressing droplet perturbation in existing sensing circuits. The circuit employs a novel fan-shaped structure of thin-film transistors. Simulation results show that it can provide a 48 V pixel voltage and demonstrate a sensing voltage difference of over 10 V between deionized water and silicone oil, illustrating its proficiency in droplet driving and accurate sensing. The stability of threshold voltage drift and temperature was also verified for the circuit. The design is tailored for integration into active matrix electrowetting-on-dielectric (AM-EWOD) chips, offering a novel approach to achieve precise closed-loop control of droplets. Full article
Show Figures

Figure 1

3 pages, 725 KB  
Abstract
A Hybrid Piezoelectric and Reverse Electrowetting Energy Harvester for Wearable Biosensors
by Sotiria D. Psoma, Ihor Sobianin and Antonios Tourlidakis
Proceedings 2024, 97(1), 200; https://doi.org/10.3390/proceedings2024097200 - 23 Apr 2024
Viewed by 1120
Abstract
Wearable biosensors play a critical role in healthcare monitoring. However, the reliance of biosensors on batteries has serious drawbacks. Although the human body’s energy can be converted into electricity with energy harvesters, the hybridisation of multiple energy harvesters is a prominent way of [...] Read more.
Wearable biosensors play a critical role in healthcare monitoring. However, the reliance of biosensors on batteries has serious drawbacks. Although the human body’s energy can be converted into electricity with energy harvesters, the hybridisation of multiple energy harvesters is a prominent way of increasing power output. In this work, a hybrid piezoelectric and reverse electrowetting (REWOD) energy harvester is proposed. Its main working principle is based on the presence of an electrical double layer in the REWOD component and coupling with a piezoelectric nanogenerator via an electret. The proposed energy harvester design was tested numerically and in a series of experiments. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

11 pages, 3003 KB  
Communication
Deep Learning Enables Optofluidic Zoom System with Large Zoom Ratio and High Imaging Resolution
by Jiancheng Xu, Fenglin Kuang, Shubin Liu and Lei Li
Sensors 2023, 23(6), 3204; https://doi.org/10.3390/s23063204 - 17 Mar 2023
Cited by 6 | Viewed by 2410
Abstract
Due to the relatively low optical power of a liquid lens, it is usually difficult to achieve a large zoom ratio and a high-resolution image simultaneously in an optofluidic zoom imaging system. We propose an electronically controlled optofluidic zoom imaging system combined with [...] Read more.
Due to the relatively low optical power of a liquid lens, it is usually difficult to achieve a large zoom ratio and a high-resolution image simultaneously in an optofluidic zoom imaging system. We propose an electronically controlled optofluidic zoom imaging system combined with deep learning, which achieves a large continuous zoom change and a high-resolution image. The zoom system consists of an optofluidic zoom objective and an image-processing module. The proposed zoom system can achieve a large tunable focal length range from 4.0 mm to 31.3 mm. In the focal length range of 9.4 mm to 18.8 mm, the system can dynamically correct the aberrations by six electrowetting liquid lenses to ensure the image quality. In the focal length range of 4.0–9.4 mm and 18.8–31.3 mm, the optical power of a liquid lens is mainly used to enlarge the zoom ratio, and deep learning enables the proposed zoom system with improved image quality. The zoom ratio of the system reaches 7.8×, and the maximum field of view of the system can reach ~29°. The proposed zoom system has potential applications in camera, telescope and so on. Full article
(This article belongs to the Special Issue Recent Advances in Optical Imaging and 3D Display Technologies)
Show Figures

Figure 1

18 pages, 8571 KB  
Article
Dynamic Adaptive Display System for Electrowetting Displays Based on Alternating Current and Direct Current
by Shixiao Li, Yijian Xu, Zhiyu Zhan, Pengyuan Du, Linwei Liu, Zikai Li, Huawei Wang and Pengfei Bai
Micromachines 2022, 13(10), 1791; https://doi.org/10.3390/mi13101791 - 20 Oct 2022
Cited by 7 | Viewed by 2210
Abstract
As a representative of the new reflective display technology, electrowetting display (EWD) technology can be used as a video playback display device due to its fast response characteristics. Direct current (DC) driving brings excellent reflectivity, but static images cannot be displayed continually due [...] Read more.
As a representative of the new reflective display technology, electrowetting display (EWD) technology can be used as a video playback display device due to its fast response characteristics. Direct current (DC) driving brings excellent reflectivity, but static images cannot be displayed continually due to charge trapping, and it can cause afterimages when playing a dynamic video due to contact angle hysteresis. Alternating current (AC) driving brings a good dynamic video refresh ability to EWDs, but that can cause flickers. In this paper, a dynamic adaptive display model based on thin film transistor-electrowetting display (TFT-EWD) was proposed. According to the displayed image content, the TFT-EWD display driver was dynamically adjusted by AC and DC driving models. A DC hybrid driving model was suitable for static image display, which could effectively suppress oil backflow and achieve static image display while ensuring high reflectivity. A source data non-polarized model (SNPM) is an AC driving model which was suitable for dynamic video display and was proposed at the same time. Compared with DC driving, it could obtain smooth display performance with a loss of about 10 absorbance units (A.U.) of reflective luminance, which could solve the flicker problem. With the DC hybrid driving model, the ability to continuously display static images could be obtained with a loss of 2 (A.U.) of luminance. Under the AC driving in SNPM, the reflected luminance was as high as 67 A.U., which was 8 A.U. higher than the source data polarized model (SPM), and it was closer to the reflected luminance under DC driving. Full article
(This article belongs to the Special Issue Advances in Optoelectronic Devices)
Show Figures

Figure 1

13 pages, 3483 KB  
Article
Versatile Movements of Liquid Metal Droplet under Electrostatic Actuation in Alkaline Solutions
by Qingming Hu, Tianyi Jiang and Hongyuan Jiang
Materials 2020, 13(9), 2122; https://doi.org/10.3390/ma13092122 - 3 May 2020
Cited by 8 | Viewed by 3255
Abstract
The gallium-based eutectic liquid metal alloys exhibit unique properties of deformability, excellent electrical conductivity and low vapour pressure. The liquid metal-based circuits’ element or actuator have drawn considerable attention in stretchable electronics and microelectromechanical (MEMS) actuators. Yet, the motion of the liquid metal [...] Read more.
The gallium-based eutectic liquid metal alloys exhibit unique properties of deformability, excellent electrical conductivity and low vapour pressure. The liquid metal-based circuits’ element or actuator have drawn considerable attention in stretchable electronics and microelectromechanical (MEMS) actuators. Yet, the motion of the liquid metal within the electrolyte needs to be precisely regulated to satisfy application requirements. Herein, we investigated the locomotion of liquid metal within the alkaline aqueous solution under electrostatic actuation. The relationship between the travelling speed of the liquid metal slug and the relative influential parameters, such as the voltage amplitude and frequencies of the applied electric field, electrolyte concentration, electrodes distance and the liquid metal volume, were experimentally characterized. A travelling speed up to 20.33 mm/s was obtained at the applied voltage of 4 Vpp at 150 Hz at 6 V DC offset. Finally, the frequency-dependent liquid metal marble movements were demonstrated, namely oscillation and forward locomotion while oscillating. The oscillation frequency was determined by the frequency of the applied alternate current (AC) signal. The remarkable transportation and oscillating characteristic of the liquid metal marble under the electrostatic actuation may present potentials towards the development of flexible electronics and reconfigurable structures. Full article
Show Figures

Figure 1

16 pages, 3122 KB  
Review
Droplet-Based Microfluidic Thermal Management Methods for High Performance Electronic Devices
by Zhibin Yan, Mingliang Jin, Zhengguang Li, Guofu Zhou and Lingling Shui
Micromachines 2019, 10(2), 89; https://doi.org/10.3390/mi10020089 - 25 Jan 2019
Cited by 39 | Viewed by 7037
Abstract
Advanced thermal management methods have been the key issues for the rapid development of the electronic industry following Moore’s law. Droplet-based microfluidic cooling technologies are considered as promising solutions to conquer the major challenges of high heat flux removal and nonuniform temperature distribution [...] Read more.
Advanced thermal management methods have been the key issues for the rapid development of the electronic industry following Moore’s law. Droplet-based microfluidic cooling technologies are considered as promising solutions to conquer the major challenges of high heat flux removal and nonuniform temperature distribution in confined spaces for high performance electronic devices. In this paper, we review the state-of-the-art droplet-based microfluidic cooling methods in the literature, including the basic theory of electrocapillarity, cooling applications of continuous electrowetting (CEW), electrowetting (EW) and electrowetting-on-dielectric (EWOD), and jumping droplet microfluidic liquid handling methods. The droplet-based microfluidic cooling methods have shown an attractive capability of microscale liquid manipulation and a relatively high heat flux removal for hot spots. Recommendations are made for further research to develop advanced liquid coolant materials and the optimization of system operation parameters. Full article
(This article belongs to the Special Issue Optofluidics 2018)
Show Figures

Figure 1

13 pages, 3491 KB  
Article
Electrical Tweezer for Droplet Transportation, Extraction, Merging and DNA Analysis
by Ali Shahid, Sylvia Chong, James Mahony, M. Jamal Deen and P. Ravi Selvaganapathy
Micromachines 2017, 8(12), 353; https://doi.org/10.3390/mi8120353 - 30 Nov 2017
Cited by 2 | Viewed by 5287
Abstract
Droplets of aqueous solutions distributed in an immiscible oil phase are increasingly used and investigated as a means to handle and assay small volumes of samples. The primary attraction of this method is that surface interactions are kept to a minimum, and changes [...] Read more.
Droplets of aqueous solutions distributed in an immiscible oil phase are increasingly used and investigated as a means to handle and assay small volumes of samples. The primary attraction of this method is that surface interactions are kept to a minimum, and changes in sample concentration, especially due to adsorption to the walls, are avoided. Microfluidic methods to generate, transport, merge, split and perform reactions in droplets were developed recently. These methods depend on the continuous flow of the two phases involved inside closed microfluidic channels. Alternatively, an electrowetting phenomenon was also exploited to control the movement of droplets between two solid substrates. However, there are some situations where small volume sample transport and assaying are required in open systems. Here, we demonstrate a simple electromechanical probe (tweezers) that is capable of manipulating a small aqueous droplet in a bi-layer oil phase. The tweezer consists of two needles positioned close to each other and uses polarization of the aqueous droplet in an applied electrical field to confine the droplet between the needles with minimal solid contact. Mechanical motion of the tweezer can be used to transport the droplet to various positions. Operations such as aliquoting, merging and transport are demonstrated. Finally, this method was used to perform a DNA amplification assay where droplets of the sample and the amplification mixture are aliquoted separately, mixed and amplified using an in-situ heater. This electromechanical tweezer is of interest in low-throughput, small-volume biological and chemical assays where the investigator requires direct and open access to the samples. Full article
(This article belongs to the Special Issue Biomedical Microdevices: Design, Fabrication and Application)
Show Figures

Figure 1

20 pages, 3564 KB  
Review
Recent Advances and Future Perspectives on Microfluidic Liquid Handling
by Nam-Trung Nguyen, Majid Hejazian, Chin Hong Ooi and Navid Kashaninejad
Micromachines 2017, 8(6), 186; https://doi.org/10.3390/mi8060186 - 12 Jun 2017
Cited by 160 | Viewed by 17464
Abstract
The interdisciplinary research field of microfluidics has the potential to revolutionize current technologies that require the handling of a small amount of fluid, a fast response, low costs and automation. Microfluidic platforms that handle small amounts of liquid have been categorised as continuous-flow [...] Read more.
The interdisciplinary research field of microfluidics has the potential to revolutionize current technologies that require the handling of a small amount of fluid, a fast response, low costs and automation. Microfluidic platforms that handle small amounts of liquid have been categorised as continuous-flow microfluidics and digital microfluidics. The first part of this paper discusses the recent advances of the two main and opposing applications of liquid handling in continuous-flow microfluidics: mixing and separation. Mixing and separation are essential steps in most lab-on-a-chip platforms, as sample preparation and detection are required for a variety of biological and chemical assays. The second part discusses the various digital microfluidic strategies, based on droplets and liquid marbles, for the manipulation of discrete microdroplets. More advanced digital microfluidic devices combining electrowetting with other techniques are also introduced. The applications of the emerging field of liquid-marble-based digital microfluidics are also highlighted. Finally, future perspectives on microfluidic liquid handling are discussed. Full article
(This article belongs to the Special Issue Insights and Advancements in Microfluidics)
Show Figures

Figure 1

13 pages, 2385 KB  
Article
Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion
by Jiaxin Hou, Wenwen Ding, Yancong Feng, Lingling Shui, Yao Wang, Hao Li, Nan Li and Guofu Zhou
Polymers 2017, 9(6), 217; https://doi.org/10.3390/polym9060217 - 11 Jun 2017
Cited by 3 | Viewed by 6481
Abstract
In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key [...] Read more.
In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key problem, we introduced a novel fluorinated polyacrylate—poly(1H,1H,2H,2H-perfluoroctylmethacrylate (PFMA) to construct micron/submicron-scale dielectric layer via facile spray coating of nanoemulsion for replacing the most common Teflon AF series. All the results illustrated that, continuous and dense PFMA film with surface relief less than 20 nm was one-step fabricated at 110 °C, and exhibited much higher static water contact angle of 124°, contact angle variation of 42°, dielectric constant of about 2.6, and breakdown voltage of 210 V than Teflon AF 1600. Particularly, soft and highly compatible polyacrylate mainchain assigned five times much better adhesiveness than common adhesive tape, to PFMA layer. As a promising option, PFMA dielectric layer may further facilitate tremendous development of electrowetting performances and applications. Full article
(This article belongs to the Special Issue Polymers and Block Copolymers at Interfaces and Surfaces)
Show Figures

Figure 1

15 pages, 2478 KB  
Article
Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet
by Qingming Hu, Yukun Ren, Weiyu Liu, Xiaoming Chen, Ye Tao and Hongyuan Jiang
Micromachines 2017, 8(4), 119; https://doi.org/10.3390/mi8040119 - 9 Apr 2017
Cited by 24 | Viewed by 7800
Abstract
In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC) continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity [...] Read more.
In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC) continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC) bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS) actuator applications because of generating high-throughput and excellent mixing performance at the same time. Full article
(This article belongs to the Special Issue Micro/Nano-Chip Electrokinetics, Volume II)
Show Figures

Figure 1

11 pages, 1857 KB  
Article
Single-Sided Digital Microfluidic (SDMF) Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling
by Sung-Yong Park and Youngsuk Nam
Micromachines 2017, 8(1), 3; https://doi.org/10.3390/mi8010003 - 24 Dec 2016
Cited by 27 | Viewed by 8309
Abstract
Digital microfluidics (DMF) driven by electrowetting-on-dielectric (EWOD) has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without [...] Read more.
Digital microfluidics (DMF) driven by electrowetting-on-dielectric (EWOD) has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without additional mechanical components such as pumps, microchannels, and capillary wicks. However, a typical sandwiched configuration in DMF devices only allows sensible heat transfer, which seriously limits heat rejection capability, particularly for high-heat-flux thermal dissipation. In this paper, we present a single-sided digital microfluidic (SDMF) device that enables not only effective liquid handling on a single-sided surface, but also two-phase heat transfer to enhance thermal rejection performance. Several droplet manipulation functions required for two-phase cooling were demonstrated, including continuous droplet injection, rapid transportation as fast as 7.5 cm/s, and immobilization on the target hot spot where heat flux is locally concentrated. Using the SDMF platform, we experimentally demonstrated high-heat-flux cooling on the hydrophilic-coated hot spot. Coolant droplets were continuously transported to the target hot spot which was mitigated below 40 K of the superheat. The effective heat transfer coefficient was stably maintained even at a high heat flux regime over ~130 W/cm2, which will allow us to develop a reliable thermal management module. Our SDMF technology offers an effective on-chip cooling approach, particularly for high-heat-flux thermal management based on two-phase heat transfer. Full article
(This article belongs to the Special Issue Optofluidics 2016)
Show Figures

Figure 1

Back to TopTop