Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = contact manifolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 351 KiB  
Article
Special Curves and Tubes in the BCV-Sasakian Manifold
by Tuba Ağırman Aydın and Ensar Ağırman
Symmetry 2025, 17(8), 1215; https://doi.org/10.3390/sym17081215 - 1 Aug 2025
Viewed by 158
Abstract
In this study, theorems and proofs related to spherical and focal curves are presented in the BCV-Sasakian space. An approximate solution to the differential equation characterizing spherical curves in the BCV-Sasakian manifold M3 is obtained using the Taylor matrix collocation method. The [...] Read more.
In this study, theorems and proofs related to spherical and focal curves are presented in the BCV-Sasakian space. An approximate solution to the differential equation characterizing spherical curves in the BCV-Sasakian manifold M3 is obtained using the Taylor matrix collocation method. The general equations of canal and tubular surfaces are provided within this geometric framework. Additionally, the curvature properties of the tubular surface constructed around a non-vertex focal curve are computed and analyzed. All of these results are presented for the first time in the literature within the context of the BCV-Sasakian geometry. Thus, this study makes a substantial contribution to the differential geometry of contact metric manifolds by extending classical concepts into a more generalized and complex geometric structure. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Pair of Associated η-Ricci–Bourguignon Almost Solitons with Generalized Conformal Killing Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2025, 13(13), 2165; https://doi.org/10.3390/math13132165 - 2 Jul 2025
Viewed by 178
Abstract
The subject of this study is almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds. The considerations are restricted to a special class of these manifolds, namely those of the Sasaki-like type, because of their geometric construction and the explicit [...] Read more.
The subject of this study is almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds. The considerations are restricted to a special class of these manifolds, namely those of the Sasaki-like type, because of their geometric construction and the explicit expression of their classification tensor by the pair of B-metrics. Here, each of the two B-metrics is considered as an η-Ricci–Bourguignon almost soliton, where η is the contact form. The soliton potential is chosen to be a conformal Killing vector field (in particular, concircular or concurrent) and then a generalization of the notion of conformality using contact conformal transformations of B-metrics. The resulting manifolds, equipped with the introduced almost solitons, are geometrically characterized. In the five-dimensional case, an explicit example on a Lie group depending on two real parameters is constructed, and the properties obtained in the theoretical part are confirmed. Full article
(This article belongs to the Special Issue Recent Studies in Differential Geometry and Its Applications)
19 pages, 301 KiB  
Article
Geometric and Structural Properties of Indefinite Kenmotsu Manifolds Admitting Eta-Ricci–Bourguignon Solitons
by Md Aquib, Oğuzhan Bahadır, Laltluangkima Chawngthu and Rajesh Kumar
Mathematics 2025, 13(12), 1965; https://doi.org/10.3390/math13121965 - 14 Jun 2025
Viewed by 274
Abstract
This paper undertakes a detailed study of η-Ricci–Bourguignon solitons on ϵ-Kenmotsu manifolds, with particular focus on three special types of Ricci tensors: Codazzi-type, cyclic parallel and cyclic η-recurrent tensors that support such solitonic structures. We derive key curvature conditions satisfying [...] Read more.
This paper undertakes a detailed study of η-Ricci–Bourguignon solitons on ϵ-Kenmotsu manifolds, with particular focus on three special types of Ricci tensors: Codazzi-type, cyclic parallel and cyclic η-recurrent tensors that support such solitonic structures. We derive key curvature conditions satisfying Ricci semi-symmetric (R·E=0), conharmonically Ricci semi-symmetric (C(ξ,βX)·E=0), ξ-projectively flat (P(βX,βY)ξ=0), projectively Ricci semi-symmetric (L·P=0) and W5-Ricci semi-symmetric (W(ξ,βY)·E=0), respectively, with the admittance of η-Ricci–Bourguignon solitons. This work further explores the role of torse-forming vector fields and provides a thorough characterization of ϕ-Ricci symmetric indefinite Kenmotsu manifolds admitting η-Ricci–Bourguignon solitons. Through in-depth analysis, we establish significant geometric constraints that govern the behavior of these manifolds. Finally, we construct explicit examples of indefinite Kenmotsu manifolds that satisfy the η-Ricci–Bourguignon solitons equation, thereby confirming their existence and highlighting their unique geometric properties. Moreover, these solitonic structures extend soliton theory to indefinite and physically meaningful settings, enhance the classification and structure of complex geometric manifolds by revealing how contact structures behave under advanced geometric flows and link the pure mathematical geometry to applied fields like general relativity. Furthermore, η-Ricci–Bourguignon solitons provide a unified framework that deepens our understanding of geometric evolution and structure-preserving transformations. Full article
(This article belongs to the Special Issue New Trends in Differential Geometry and Geometric Analysis)
11 pages, 265 KiB  
Article
Pair of Associated η-Ricci–Bourguignon Almost Solitons with Vertical Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2025, 13(11), 1863; https://doi.org/10.3390/math13111863 - 3 Jun 2025
Cited by 1 | Viewed by 375
Abstract
The manifolds studied are almost contact complex Riemannian manifolds, known also as almost contact B-metric manifolds. They are equipped with a pair of pseudo-Riemannian metrics that are mutually associated to each other using an almost contact structure. Furthermore, the structural endomorphism acts as [...] Read more.
The manifolds studied are almost contact complex Riemannian manifolds, known also as almost contact B-metric manifolds. They are equipped with a pair of pseudo-Riemannian metrics that are mutually associated to each other using an almost contact structure. Furthermore, the structural endomorphism acts as an anti-isometry for these metrics, called B-metrics, if its action is restricted to the contact distribution of the manifold. In this paper, some curvature properties of a special class of these manifolds, called Sasaki-like, are studied. Such a manifold is defined by the condition that its complex cone is a holomorphic complex Riemannian manifold (also called a Kähler–Norden manifold). Each of the two B-metrics on the considered manifold is specialized here as an η-Ricci–Bourguignon almost soliton, where η is the contact form, i.e., has an additional curvature property such that the metric is a self-similar solution of a special intrinsic geometric flow. Almost solitons are generalizations of solitons because their defining condition uses functions rather than constants as coefficients. The introduced (almost) solitons are a generalization of some well-known (almost) solitons (such as those of Ricci, Schouten, and Einstein). The soliton potential is chosen to be collinear with the Reeb vector field and is therefore called vertical. The special case of the soliton potential being solenoidal (i.e., divergence-free) with respect to each of the B-metrics is also considered. The resulting manifolds equipped with the pair of associated η-Ricci–Bourguignon almost solitons are characterized geometrically. An example of arbitrary dimension is constructed and the properties obtained in the theoretical part are confirmed. Full article
(This article belongs to the Special Issue Analysis on Differentiable Manifolds)
15 pages, 325 KiB  
Article
η-Ricci Solitons on Weak β-Kenmotsu f-Manifolds
by Vladimir Rovenski
Mathematics 2025, 13(11), 1734; https://doi.org/10.3390/math13111734 - 24 May 2025
Viewed by 245
Abstract
Recent interest among geometers in f-structures of K. Yano is due to the study of topology and dynamics of contact foliations, which generalize the flow of the Reeb vector field on contact manifolds to higher dimensions. Weak metric structures introduced by the [...] Read more.
Recent interest among geometers in f-structures of K. Yano is due to the study of topology and dynamics of contact foliations, which generalize the flow of the Reeb vector field on contact manifolds to higher dimensions. Weak metric structures introduced by the author and R. Wolak as a generalization of Hermitian and Kähler structures, as well as f-structures, allow for a fresh perspective on the classical theory. In this paper, we study a new f-structure of this kind, called the weak β-Kenmotsu f-structure, as a generalization of K. Kenmotsu’s concept. We prove that a weak β-Kenmotsu f-manifold is a locally twisted product of the Euclidean space and a weak Kähler manifold. Our main results show that such manifolds with β=const and equipped with an η-Ricci soliton structure whose potential vector field satisfies certain conditions are η-Einstein manifolds of constant scalar curvature. Full article
(This article belongs to the Special Issue Differential Geometric Structures and Their Applications)
17 pages, 279 KiB  
Article
CL-Transformation on 3-Dimensional Quasi Sasakian Manifolds and Their Ricci Soliton
by Rajesh Kumar, Lalnunenga Colney and Dalal Alhwikem
Mathematics 2025, 13(10), 1543; https://doi.org/10.3390/math13101543 - 8 May 2025
Viewed by 336
Abstract
This paper explores the geometry of 3-dimensional quasi Sasakian manifolds under CL-transformations. We construct both infinitesimal and CL-transformation and demonstrate that the former does not necessarily yield projective killing vector fields. A novel invariant tensor, termed the CL-curvature [...] Read more.
This paper explores the geometry of 3-dimensional quasi Sasakian manifolds under CL-transformations. We construct both infinitesimal and CL-transformation and demonstrate that the former does not necessarily yield projective killing vector fields. A novel invariant tensor, termed the CL-curvature tensor, is introduced and shown to remain invariant under CL-transformations. Utilizing this tensor, we characterize CL-flat, CL-symmetric, CL-φ symmetric and CL-φ recurrent structures on such manifolds by mean of differential equations. Furthermore, we investigate conditions under which a Ricci soliton exists on a CL-transformed quasi Sasakian manifold, revealing that under flat curvature, the structure becomes Einstein. These findings contribute to the understanding of curvature dynamics and soliton theory within the context of contact metric geometry. Full article
13 pages, 2056 KiB  
Article
Finding Crystal Orientations in Uniplanar Textures
by Josef Simbrunner, Fabian Gasser, Sanjay John, Ingo Salzmann and Roland Resel
Crystals 2025, 15(5), 443; https://doi.org/10.3390/cryst15050443 - 8 May 2025
Viewed by 398
Abstract
The crystallization of molecular materials on isotropic substrates typically results in a so-called fiber or uniplanar texture that comprises crystallites that share a common fiber axis perpendicular to the substrate surface, but that are azimuthally randomly oriented. The crystallographic characterization of such films [...] Read more.
The crystallization of molecular materials on isotropic substrates typically results in a so-called fiber or uniplanar texture that comprises crystallites that share a common fiber axis perpendicular to the substrate surface, but that are azimuthally randomly oriented. The crystallographic characterization of such films is commonly performed by grazing-incidence X-ray diffraction. Thereby, two-dimensional reciprocal space maps are obtained that incorporate the in-plane component qxy and the out-of-plane component qz for each diffraction peak. The exact position of each diffraction peak depends on the crystallographic lattice and on the orientation of the unit cell relative to the substrate surface. The unit cell orientation can be characterized either by two rotation angles or by the Miller indices of the crystallographic plane (contact plane) parallel to the substrate surface. Equations are derived that allow the calculation of these orientation parameters and describe the relations between them. Depending on the crystallographic system of the underlying unit cell and its contact plane, manifold possible orientations may exist due to the multiplicity of planes contributing to the same reflections. Examples based on molecular crystals of pentacenequinone, diindenoperylene, and binaphthalene are discussed, which are illustrative examples comprising triclinic, monoclinic, and tetragonal unit cells having two, four, and sixteen possible crystal orientations, respectively. Full article
Show Figures

Figure 1

6 pages, 167 KiB  
Editorial
Geometry of Manifolds and Applications
by Adara M. Blaga
Mathematics 2025, 13(6), 990; https://doi.org/10.3390/math13060990 - 18 Mar 2025
Viewed by 535
Abstract
This editorial presents 24 research articles published in the Special Issue entitled Geometry of Manifolds and Applications of the MDPI Mathematics journal, which covers a wide range of topics from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the latest [...] Read more.
This editorial presents 24 research articles published in the Special Issue entitled Geometry of Manifolds and Applications of the MDPI Mathematics journal, which covers a wide range of topics from the geometry of (pseudo-)Riemannian manifolds and their submanifolds, providing some of the latest achievements in many branches of theoretical and applied mathematical studies, among which is counted: the geometry of differentiable manifolds with curvature restrictions such as complex space forms, metallic Riemannian space forms, Hessian manifolds of constant Hessian curvature; optimal inequalities for submanifolds, such as generalized Wintgen inequality, inequalities involving δ-invariants; homogeneous spaces and Poisson–Lie groups; the geometry of biharmonic maps; solitons (Ricci solitons, Yamabe solitons, Einstein solitons) in different geometries such as contact and paracontact geometry, complex and metallic Riemannian geometry, statistical and Weyl geometry; perfect fluid spacetimes [...] Full article
(This article belongs to the Special Issue Geometry of Manifolds and Applications)
24 pages, 395 KiB  
Review
Geometry of Weak Metric f-Manifolds: A Survey
by Vladimir Rovenski
Mathematics 2025, 13(4), 556; https://doi.org/10.3390/math13040556 - 8 Feb 2025
Cited by 1 | Viewed by 566
Abstract
The interest of geometers in f-structures is motivated by the study of the dynamics of contact foliations, as well as their applications in physics. A weak f-structure on a smooth manifold, introduced by the author and R. Wolak, generalizes K. Yano’s [...] Read more.
The interest of geometers in f-structures is motivated by the study of the dynamics of contact foliations, as well as their applications in physics. A weak f-structure on a smooth manifold, introduced by the author and R. Wolak, generalizes K. Yano’s f-structure. This generalization allows us to revisit classical theory and discover applications of Killing vector fields, totally geodesic foliations, Ricci-type solitons, and Einstein-type metrics. This article reviews the results regarding weak metric f-manifolds and their distinguished classes. Full article
(This article belongs to the Special Issue Recent Studies in Differential Geometry and Its Applications)
11 pages, 265 KiB  
Article
Ricci–Bourguignon Almost Solitons with Vertical Torse-Forming Potential on Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2025, 13(2), 243; https://doi.org/10.3390/math13020243 - 13 Jan 2025
Viewed by 608
Abstract
Almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds, are equipped with Ricci–Bourguignon-like almost solitons. These almost solitons are a generalization of the known Ricci–Bourguignon almost solitons, in which, in addition to the main metric, the associated metric of the [...] Read more.
Almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds, are equipped with Ricci–Bourguignon-like almost solitons. These almost solitons are a generalization of the known Ricci–Bourguignon almost solitons, in which, in addition to the main metric, the associated metric of the manifold is also involved. In the present paper, the soliton potential is specialized to be pointwise collinear with the Reeb vector field of the manifold structure, as well as torse-forming with respect to the two Levi-Civita connections of the pair of B-metrics. The forms of the Ricci tensor and the scalar curvatures generated by the pair of B-metrics on the studied manifolds with the additional structures have been found. In the three-dimensional case, an explicit example is constructed and some of the properties obtained in the theoretical part are illustrated. Full article
(This article belongs to the Special Issue Differentiable Manifolds and Geometric Structures)
21 pages, 336 KiB  
Article
Twistor and Reflector Spaces for Paraquaternionic Contact Manifolds
by Stefan Ivanov, Ivan Minchev and Marina Tchomakova
Mathematics 2024, 12(21), 3355; https://doi.org/10.3390/math12213355 - 25 Oct 2024
Viewed by 863
Abstract
We consider certain fiber bundles over paraquaternionic contact manifolds, called twistor and reflector spaces. We show that the twistor space carries an integrable CR structure (Cauchy–Riemann structure) and the reflector space is an integrable para-CR structure, both with neutral signatures. Full article
(This article belongs to the Special Issue Differentiable Manifolds and Geometric Structures)
9 pages, 264 KiB  
Article
Weak Quasi-Contact Metric Manifolds and New Characteristics of K-Contact and Sasakian Manifolds
by Vladimir Rovenski
Mathematics 2024, 12(20), 3230; https://doi.org/10.3390/math12203230 - 15 Oct 2024
Viewed by 1704
Abstract
Quasi-contact metric manifolds (introduced by Y. Tashiro and then studied by several authors) are a natural extension of contact metric manifolds. Weak almost-contact metric manifolds, i.e., where the linear complex structure on the contact distribution is replaced by a nonsingular skew-symmetric tensor, have [...] Read more.
Quasi-contact metric manifolds (introduced by Y. Tashiro and then studied by several authors) are a natural extension of contact metric manifolds. Weak almost-contact metric manifolds, i.e., where the linear complex structure on the contact distribution is replaced by a nonsingular skew-symmetric tensor, have been defined by the author and R. Wolak. In this paper, we study a weak analogue of quasi-contact metric manifolds. Our main results generalize some well-known theorems and provide new criterions for K-contact and Sasakian manifolds in terms of conditions on the curvature tensor and other geometric objects associated with the weak quasi-contact metric structure. Full article
(This article belongs to the Special Issue Differential Geometric Structures and Their Applications)
24 pages, 5021 KiB  
Article
A Robust Tri-Electromagnet-Based 6-DoF Pose Tracking System Using an Error-State Kalman Filter
by Shuda Dong and Heng Wang
Sensors 2024, 24(18), 5956; https://doi.org/10.3390/s24185956 - 13 Sep 2024
Cited by 1 | Viewed by 1488
Abstract
Magnetic pose tracking is a non-contact, accurate, and occlusion-free method that has been increasingly employed to track intra-corporeal medical devices such as endoscopes in computer-assisted medical interventions. In magnetic pose-tracking systems, a nonlinear estimation algorithm is needed to recover the pose information from [...] Read more.
Magnetic pose tracking is a non-contact, accurate, and occlusion-free method that has been increasingly employed to track intra-corporeal medical devices such as endoscopes in computer-assisted medical interventions. In magnetic pose-tracking systems, a nonlinear estimation algorithm is needed to recover the pose information from magnetic measurements. In existing pose estimation algorithms such as the extended Kalman filter (EKF), the 3-DoF orientation in the S3 manifold is normally parametrized as unit quaternions and simply treated as a vector in the Euclidean space, which causes a violation of the unity constraint of quaternions and reduces pose tracking accuracy. In this paper, a pose estimation algorithm based on the error-state Kalman filter (ESKF) is proposed to improve the accuracy and robustness of electromagnetic tracking systems. The proposed system consists of three electromagnetic coils for magnetic field generation and a tri-axial magnetic sensor attached to the target object for field measurement. A strategy of sequential coil excitation is developed to separate the magnetic fields from different coils and reject magnetic disturbances. Simulation and experiments are conducted to evaluate the pose tracking performance of the proposed ESKF algorithm, which is also compared with standard EKF and constrained EKF. It is shown that the ESKF can effectively maintain the quaternion unity and thus achieve a better tracking accuracy, i.e., a Euclidean position error of 2.23 mm and an average orientation angle error of 0.45°. The disturbance rejection performance of the electromagnetic tracking system is also experimentally validated. Full article
Show Figures

Graphical abstract

24 pages, 609 KiB  
Article
A Discrete Hamilton–Jacobi Theory for Contact Hamiltonian Dynamics
by Oğul Esen, Cristina Sardón and Marcin Zajac
Mathematics 2024, 12(15), 2342; https://doi.org/10.3390/math12152342 - 26 Jul 2024
Cited by 1 | Viewed by 964
Abstract
In this paper, we propose a discrete Hamilton–Jacobi theory for (discrete) Hamiltonian dynamics defined on a (discrete) contact manifold. To this end, we first provide a novel geometric Hamilton–Jacobi theory for continuous contact Hamiltonian dynamics. Then, rooting on the discrete contact Lagrangian formulation, [...] Read more.
In this paper, we propose a discrete Hamilton–Jacobi theory for (discrete) Hamiltonian dynamics defined on a (discrete) contact manifold. To this end, we first provide a novel geometric Hamilton–Jacobi theory for continuous contact Hamiltonian dynamics. Then, rooting on the discrete contact Lagrangian formulation, we obtain the discrete equations for Hamiltonian dynamics by the discrete Legendre transformation. Based on the discrete contact Hamilton equation, we construct a discrete Hamilton–Jacobi equation for contact Hamiltonian dynamics. We show how the discrete Hamilton–Jacobi equation is related to the continuous Hamilton–Jacobi theory presented in this work. Then, we propose geometric foundations of the discrete Hamilton–Jacobi equations on contact manifolds in terms of discrete contact flows. At the end of the paper, we provide a numerical example to test the theory. Full article
(This article belongs to the Special Issue Variational Problems and Applications, 2nd Edition)
Show Figures

Figure 1

9 pages, 261 KiB  
Article
Ricci–Bourguignon Almost Solitons with Special Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2024, 12(13), 2100; https://doi.org/10.3390/math12132100 - 4 Jul 2024
Cited by 3 | Viewed by 1051
Abstract
Almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds, are equipped with a pair of pseudo-Riemannian metrics that are mutually associated with each other using the tensor structure. Here, we consider a special class of these manifolds, namely those of [...] Read more.
Almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds, are equipped with a pair of pseudo-Riemannian metrics that are mutually associated with each other using the tensor structure. Here, we consider a special class of these manifolds, namely those of the Sasaki-like type. They have an interesting geometric interpretation: the complex cone of such a manifold is a holomorphic complex Riemannian manifold (also called a Kähler–Norden manifold). The basic metric on the considered manifold is specialized here as a soliton, i.e., has an additional curvature property such that the metric is a self-similar solution to an intrinsic geometric flow. Almost solitons are more general objects than solitons because they use functions rather than constants as coefficients in the defining condition. A β-Ricci–Bourguignon-like almost soliton (β is a real constant) is defined using the pair of metrics. The introduced soliton is a generalization of some well-known (almost) solitons (such as those of Ricci, Schouten, and Einstein) which, in principle, arise from a single metric rather than a pair of metrics. The soliton potential is chosen to be pointwise collinear to the Reeb vector field, or the Lie derivative of any B-metric along the potential to be the same metric multiplied by a function. The resulting manifolds equipped with the introduced almost solitons are characterized geometrically. Suitable examples for both types of almost solitons are constructed, and the properties obtained in the theoretical part are confirmed. Full article
(This article belongs to the Special Issue Recent Studies in Differential Geometry and Its Applications)
Back to TopTop