Ricci–Bourguignon Almost Solitons with Vertical Torse-Forming Potential on Almost Contact Complex Riemannian Manifolds
Abstract
:1. Introduction
2. The accR Manifolds
3. RB-like Almost Solitons with Torse-Forming Potential
3.1. The Soliton Potential Is Torse-Forming
3.2. The Torse-Forming Potential Is Vertical
4. Example on the Cone Over a 2-Dimensional Complex Space Form with Norden Metric
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bourguignon, J.-P. Ricci curvature and Einstein metrics. In Global Differential Geometry and Global Analysis (Berlin, 1979); Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 838, pp. 42–63. [Google Scholar]
- Catino, G.; Cremaschi, L.; Djadli, Z.; Mantegazza, C.; Mazzieri, L. The Ricci-Bourguignon Flow. Pac. J. Math. 2017, 287, 337–370. [Google Scholar] [CrossRef]
- Dwivedi, S. Some results on Ricci-Bourguignon solitons and almost solitons. Can. Math. Bull. 2021, 64, 591–604. [Google Scholar] [CrossRef]
- Siddiqui, A.N.; Siddiqi, M.D. Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime. Balk. J. Geom. Appl. 2021, 26, 126–138. [Google Scholar]
- Catino, G.; Mazzieri, L.; Mongodi, S. Rigidity of gradient Einstein shrinkers. Commun. Contemp. Math. 2015, 17, 1550046. [Google Scholar] [CrossRef]
- Blaga, A.M.; Taştan, H.M. Some results on almost η-Ricci-Bourguignon solitons. J. Geom. Phys. 2021, 168, 104316. [Google Scholar] [CrossRef]
- Dey, S.; Suh, Y.J. Geometry of almost contact metrics as an almost ∗-η-Ricci–Bourguignon solitons. Rev. Math. Phys. 2023, 35, 2350012. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Amruthalakshmi, M.R.; Suh, Y.J. Geometric characterizations of almost Ricci-Bourguignon solitons on Kenmotsu manifolds. Filomat 2024, 38, 861–871. [Google Scholar] [CrossRef]
- De, U.C.; De, K. K-Ricci–Bourguignon Almost Solitons. Int. Electron. J. Geom. 2024, 17, 63–71. [Google Scholar] [CrossRef]
- Traore, M.; Tastan, H.M.; Aydin, S.G. On almost η-Ricci–Bourguignon solitons. Miskolc Math. Notes 2024, 25, 493–508. [Google Scholar] [CrossRef]
- Dey, S.; Hui, S.K.; Roy, S.; Alkhaldi, A.H. Conformal η-Ricci–Bourguignon soliton in general relativistic spacetime. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450148. [Google Scholar] [CrossRef]
- Manev, M. Ricci-Bourguignon almost solitons with special potential on Sasaki-like almost contact complex Riemannian manifolds. Mathematics 2024, 12, 2100. [Google Scholar] [CrossRef]
- Ganchev, G.; Mihova, V.; Gribachev, K. Almost contact manifolds with B-metric. Math. Balk. 1993, 7, 261–276. [Google Scholar]
- Manev, M. Ricci-like solitons on almost contact B-metric manifolds. J. Geom. Phys. 2020, 154, 103734. [Google Scholar] [CrossRef]
- Yano, K. On torse forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo 1944, 20, 340–345. [Google Scholar] [CrossRef]
- Schouten, J.A. Ricci Calculus. An Introduction to Tensor Analysis and Its Geometrical Applications; Springer: Berlin/Heidelberg, Germany, 1954. [Google Scholar]
- Mihai, A.; Mihai, I. Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications. J. Geom. Phys. 2013, 73, 200–208. [Google Scholar] [CrossRef]
- Chen, B.-Y. Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujev. J. Math. 2017, 41, 93–103. [Google Scholar] [CrossRef]
- Yano, K. Concircular geometry I, Concircular transformations. Proc. Imp. Acad. Tokyo 1940, 16, 195–200. [Google Scholar] [CrossRef]
- Yano, K.; Chen, B.-Y. On the concurrent vector fields of immersed manifolds. Kodai Math. Sem. Rep. 1971, 23, 343–350. [Google Scholar] [CrossRef]
- Wong, Y.-C. Recurrent tensors on a linearly connected differentiable manifold. Trans. Amer. Math. Soc. 1961, 99, 325–341. [Google Scholar] [CrossRef]
- Chen, B.-Y. Classification of torqued vector fields and its applications to Ricci solitons. Kragujev. J. Math. 2017, 41, 239–250. [Google Scholar] [CrossRef]
- Nakova, G.; Gribachev, K. One classification of almost contact manifolds with B-metric. Sci. Works V. Levski Higher Mil. Sch. Velik. Tarnovo 1993, 27, 208–214. [Google Scholar]
- Manev, M. Properties of curvature tensors on almost contact manifolds with B-metric. Sci. Works V. Levski Higher Mil. Sch. Velik. Tarnovo 1993, 27, 221–227. [Google Scholar]
- Manev, H. Almost contact B-metric manifolds as extensions of a 2-dimensional space-form. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 2016, 55, 59–71. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manev, M. Ricci–Bourguignon Almost Solitons with Vertical Torse-Forming Potential on Almost Contact Complex Riemannian Manifolds. Mathematics 2025, 13, 243. https://doi.org/10.3390/math13020243
Manev M. Ricci–Bourguignon Almost Solitons with Vertical Torse-Forming Potential on Almost Contact Complex Riemannian Manifolds. Mathematics. 2025; 13(2):243. https://doi.org/10.3390/math13020243
Chicago/Turabian StyleManev, Mancho. 2025. "Ricci–Bourguignon Almost Solitons with Vertical Torse-Forming Potential on Almost Contact Complex Riemannian Manifolds" Mathematics 13, no. 2: 243. https://doi.org/10.3390/math13020243
APA StyleManev, M. (2025). Ricci–Bourguignon Almost Solitons with Vertical Torse-Forming Potential on Almost Contact Complex Riemannian Manifolds. Mathematics, 13(2), 243. https://doi.org/10.3390/math13020243