Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = confined space explosion dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6989 KB  
Article
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
by Ciro Caliendo, Isidoro Russo and Gianluca Genovese
Appl. Sci. 2025, 15(19), 10660; https://doi.org/10.3390/app151910660 - 2 Oct 2025
Viewed by 620
Abstract
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale [...] Read more.
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale transport by rail. However, the flammability of hydrogen poses serious safety concerns, especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train, the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences, especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study, a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel, when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However, shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings, by providing additional insight into the risks associated with LH2 transport in railway tunnels, indicate the need for risk mitigation measures and/or traffic management strategies. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 15362 KB  
Article
The Influence of Different Concentrations of Methane in Ditches on the Propagation Characteristics of Explosions
by Xingxing Liang, Junjie Cheng, Yibo Zhang and Zhongqi Wang
Fire 2025, 8(7), 275; https://doi.org/10.3390/fire8070275 - 11 Jul 2025
Viewed by 981
Abstract
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and [...] Read more.
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and with a water volume fraction of 0.2—was developed to address the flexible boundary characteristics of urban underground ditches. The investigation examined the influence of methane concentration on explosion propagation characteristics. Results indicated that, at a methane concentration of 11%, the peak pressure attained 157.9 kPa, and the peak temperature exceeded 3100 K—all of which were significantly higher than the corresponding values at 10%, 13%, and 16% concentrations. Explosion-induced water motion exerted a cooling effect that inhibited heat and pressure transfer, while obstacles imposed partial restrictions on flame propagation. Temporal profiles of temperature and pressure exhibited three distinct stages: “initial stability–rapid rise–attenuation”. Notably, at a methane concentration of 16%, the water column formed by fluid vibration demonstrated a pronounced cooling effect, causing faster decreases in measured temperatures and pressures compared to other concentrations. Full article
Show Figures

Figure 1

26 pages, 4557 KB  
Article
Quantitative Analysis of Explosion Characteristics Based on Ignition Location in an Ammonia Fuel Preparation Room Using CFD Simulation
by Jin-Woo Bae, Beom-Seok Noh, Ji-Woong Lee, Su-Jeong Choe, Kweon-Ha Park, Jeong-Do Kim and Jae-Hyuk Choi
Appl. Sci. 2025, 15(12), 6554; https://doi.org/10.3390/app15126554 - 11 Jun 2025
Cited by 2 | Viewed by 924
Abstract
Ammonia (NH3) is a promising carbon-free marine fuel that is aligned with the International Maritime Organization’s (IMO) decarbonization targets. However, its high toxicity and flammability pose serious explosion hazards, particularly in confined fuel preparation spaces. This study investigates the influence of [...] Read more.
Ammonia (NH3) is a promising carbon-free marine fuel that is aligned with the International Maritime Organization’s (IMO) decarbonization targets. However, its high toxicity and flammability pose serious explosion hazards, particularly in confined fuel preparation spaces. This study investigates the influence of the ignition source location on the explosion characteristics of ammonia within an ammonia fuel preparation room using computational fluid dynamics (CFD) simulations via the FLACS platform. Nineteen ignition scenarios are established along the X-, Y-, and Z-axes. Key parameters, such as the maximum overpressure, pressure rise rate, reduction rate of flammable gas, ignition detection time, and spatial–temporal distributions of temperature and combustion products, are evaluated. The results show that the ignition location plays a critical role in the explosion dynamics. Ceiling-level ignition (Case 19) produced the highest overpressure (4.27 bar) and fastest pressure rise rate (2.20 bar/s), indicating the most hazardous condition. In contrast, the forward wall ignition (Case 13) resulted in the lowest overpressure (3.24 bar) and limited flame propagation. These findings provide essential insights into the risk assessment and safety design of ammonia-fueled marine systems. Full article
(This article belongs to the Special Issue Advances in Combustion Science and Engineering)
Show Figures

Figure 1

22 pages, 2034 KB  
Article
SimEx: A Tool for the Rapid Evaluation of the Effects of Explosions
by Juan Sánchez-Monreal, Alberto Cuadra, César Huete and Marcos Vera
Appl. Sci. 2022, 12(18), 9101; https://doi.org/10.3390/app12189101 - 10 Sep 2022
Cited by 1 | Viewed by 4725
Abstract
The dynamic response of structural elements subjected to blast loading is a problem of growing interest in the field of defense and security. In this work, a novel computational tool for the rapid evaluation of the effects of explosions, hereafter referred to as [...] Read more.
The dynamic response of structural elements subjected to blast loading is a problem of growing interest in the field of defense and security. In this work, a novel computational tool for the rapid evaluation of the effects of explosions, hereafter referred to as SimEx, is presented and discussed. The classical correlations for the reference chemical (1 kg of TNT) and nuclear (106 kg of TNT) explosions, both spherical and hemispherical, are used together with the blast wave scaling laws and the International Standard Atmosphere (ISA) to compute the dynamic response of Single-Degree-of-Freedom (SDOF) systems subject to blast loading. The underlying simplifications in the analysis of the structural response follow the directives established by UFC 3-340-02 and the Protective Design Center Technical Reports of the US Army Corps of Engineers. This offers useful estimates with a low computational cost that enable in particular the computation of damage diagrams in the Charge Weight–Standoff distance (CW–S) space for the rapid screening of component (or building) damage levels. SimEx is a computer application based on Matlab and developed by the Fluid Mechanics Research Group at University Carlos III of Madrid (UC3M). It has been successfully used for both teaching and research purposes in the Degree in Security Engineering, taught to the future Guardia Civil officers at the Spanish University Center of the Civil Guard (CUGC). This dual use has allowed the development of the application well beyond its initial objective, testing on one hand the implemented capacities by undergraduate cadets with the end-user profile, and implementing new functionalities and utilities by Masters and PhD students. With this experience, the application has been continuously growing since its initial inception in 2014 both at a visual and a functional level, including new effects in the propagation of the blast waves, such as clearing and confinement, and incorporating new calculation assistants, such as those for the thermochemical analysis of explosive mixtures; crater formation; fragment mass distributions, ejection speeds and ballistic trajectories; and the statistical evaluation of damage to people due to overpressure, body projection, and fragment injuries. Full article
(This article belongs to the Special Issue Blast and Impact Engineering on Structures and Materials)
Show Figures

Figure 1

19 pages, 4005 KB  
Article
Predicting the Deflection of Square Plates Subjected to Fully Confined Blast Loading
by Cheng Zheng, Yiwen Wang, Xiangshao Kong, Hu Zhou, Haibao Liu and Weiguo Wu
J. Mar. Sci. Eng. 2020, 8(12), 1031; https://doi.org/10.3390/jmse8121031 - 18 Dec 2020
Cited by 4 | Viewed by 3535
Abstract
The main objective of this study is to conveniently and rapidly develop a new dimensionless number to characterize and predict the deflection of square plates subjected to fully confined blast loading. Firstly, based on the Kirchhoff–Love theory and dimension analysis, a set of [...] Read more.
The main objective of this study is to conveniently and rapidly develop a new dimensionless number to characterize and predict the deflection of square plates subjected to fully confined blast loading. Firstly, based on the Kirchhoff–Love theory and dimension analysis, a set of dimensionless parameters was obtained from the governing equation representing the response of a thin plate subjected to impact load. A new dimensionless number with a definite physical meaning was then proposed based on dimensional analysis, in which the influence of bending, torsion moment and membrane forces on the dynamic response of the blast-loaded plate were considered along with the related parameters of the blast' energy, the yield strength of the material, the plate thickness and dimensions of the confined space. By analyzing the experimental data of plates subjected to confined blast loading, an approximately linear relationship between the midpoint deflection–thickness ratio of the target plate and the new dimensionless number was derived. On this basis, an empirical formula to predict the deflection of square plates subjected to fully confined blast loading was subsequently regressed, and its calculated results agree well with the experimental data. Furthermore, numerical simulations of square plates subjected to blast loading in a cuboid chamber with different lengths were performed. The numerical results were compared with the calculated data to verify the applicability of the present empirical formula in different scenarios of blast loading from explosions in a cuboid space. It is indicated that the new dimensionless number and corresponding empirical formula presented in this paper have good applicability and reliability for the deflection prediction of plates subjected to fully confined explosions in a cuboid chamber with different lengths, especially when the plates experience a large deflection–thickness ratio. Full article
(This article belongs to the Special Issue Accidental Limit States of Marine Structures)
Show Figures

Figure 1

11 pages, 2486 KB  
Article
Scale Effect of Premixed Methane-Air Combustion in Confined Space Using LES Model
by Liang Wang, Sisi Que, Jerry C. Tien and Nassib S. Aouad
Minerals 2016, 6(1), 2; https://doi.org/10.3390/min6010002 - 29 Dec 2015
Cited by 3 | Viewed by 5392
Abstract
Gas explosion is the most hazardous incident occurring in underground airways. Computational Fluid Dynamics (CFD) techniques are sophisticated in simulating explosions in confined spaces; specifically, when testing large-scale gaseous explosions, such as methane explosions in underground mines. The dimensions of a confined space [...] Read more.
Gas explosion is the most hazardous incident occurring in underground airways. Computational Fluid Dynamics (CFD) techniques are sophisticated in simulating explosions in confined spaces; specifically, when testing large-scale gaseous explosions, such as methane explosions in underground mines. The dimensions of a confined space where explosions could occur vary significantly. Thus, the scale effect on explosion parameters is worth investigating. In this paper, the impact of scaling on explosion overpressures is investigated by employing two scaling factors: The Gas-fill Length Scaling Factor (FLSF) and the Hydraulic Diameter Scaling Factor (HDSF). The combinations of eight FLSFs and five HDSFs will cover a wide range of space dimensions where flammable gas could accumulate. Experiments were also conducted to evaluate the selected numerical models. The Large Eddy Simulation turbulence model was selected because it shows accuracy compared to the widely used Reynolds’ averaged models for the scenarios investigated in the experiments. Three major conclusions can be drawn: (1) The overpressure increases with both FLSF and HDSF within the deflagration regime; (2) In an explosion duct with a length to diameter ratio greater than 54, detonation is more likely to be triggered for a stoichiometric methane/air mixture; (3) Overpressure increases as an increment hydraulic diameter of a geometry within deflagration regime. A relative error of 7% is found when predicting blast peak overpressure for the base case compared to the experiment; a good agreement for the wave arrival time is also achieved. Full article
(This article belongs to the Special Issue Advanced Underground Mine Ventilation and Monitoring Systems)
Show Figures

Figure 1

Back to TopTop