Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = component stoichiometry tuning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9773 KiB  
Article
High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials
by Yuan-Ting Lin, Bai-Tong Niu, Zi-Han Wang, Yu-Xi Li, Yun-Peng Xu, Shi-Wei Liu, Yan-Xin Chen and Xiu-Mei Lin
Molecules 2024, 29(19), 4559; https://doi.org/10.3390/molecules29194559 - 25 Sep 2024
Cited by 2 | Viewed by 1989
Abstract
Prussian blue analogs (PBAs) are appealing cathode materials for sodium-ion batteries because of their low material cost, facile synthesis methods, rigid open framework, and high theoretical capacity. However, the poor electrical conductivity, unavoidable presence of [Fe(CN)6] vacancies and crystalline water within [...] Read more.
Prussian blue analogs (PBAs) are appealing cathode materials for sodium-ion batteries because of their low material cost, facile synthesis methods, rigid open framework, and high theoretical capacity. However, the poor electrical conductivity, unavoidable presence of [Fe(CN)6] vacancies and crystalline water within the framework, and phase transition during charge–discharge result in inferior electrochemical performance, particularly in terms of rate capability and cycling stability. Here, cobalt-free PBAs are synthesized using a facile and economic co-precipitation method at room temperature, and their sodium-ion storage performance is boosted due to the reduced crystalline water content and improved electrical conductivity via the high-entropy and component stoichiometry tuning strategies, leading to enhanced initial Coulombic efficiency (ICE), specific capacity, cycling stability, and rate capability. The optimized HE-HCF of Fe0.60Mn0.10-hexacyanoferrate (referred to as Fe0.60Mn0.10-HCF), with the chemical formula Na1.156Fe0.599Mn0.095Ni0.092Cu0.109Zn0.105 [Fe(CN)6]0.724·3.11H2O, displays the most appealing electrochemical performance of an ICE of 100%, a specific capacity of around 115 and 90 mAh·g−1 at 0.1 and 1.0 A·g−1, with 66.7% capacity retention observed after 1000 cycles and around 61.4% capacity retention with a 40-fold increase in specific current. We expect that our findings could provide reference strategies for the design of SIB cathode materials with superior electrochemical performance. Full article
Show Figures

Figure 1

17 pages, 3752 KiB  
Article
Biocompatible Phosphorescent O2 Sensors Based on Ir(III) Complexes for In Vivo Hypoxia Imaging
by Mozhgan Samandarsangari, Daria O. Kozina, Victor V. Sokolov, Anastasia D. Komarova, Marina V. Shirmanova, Ilya S. Kritchenkov and Sergey P. Tunik
Biosensors 2023, 13(7), 680; https://doi.org/10.3390/bios13070680 - 26 Jun 2023
Cited by 7 | Viewed by 2266
Abstract
In this work, we obtained three new phosphorescent iridium complexes (Ir1Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such [...] Read more.
In this work, we obtained three new phosphorescent iridium complexes (Ir1Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes’ sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1Ir3 emission maxima fell in the range of 630–650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied. Full article
(This article belongs to the Special Issue Advances in Fluorescent Probe Biosensing)
Show Figures

Figure 1

10 pages, 3865 KiB  
Article
Intermolecular Forces Driving Hexamethylenetetramine Co-Crystal Formation, a DFT and XRD Analysis
by Giovanni Bella, Francesco Nicolò, Giuseppe Bruno and Antonio Santoro
Molecules 2021, 26(19), 5746; https://doi.org/10.3390/molecules26195746 - 22 Sep 2021
Cited by 4 | Viewed by 2626
Abstract
Interest in co-crystals formation has been constantly growing since their discovery, almost a century ago. Such success is due to the ability to tune the physical-chemical properties of the components in solid state by avoiding a change in their molecular structure. The properties [...] Read more.
Interest in co-crystals formation has been constantly growing since their discovery, almost a century ago. Such success is due to the ability to tune the physical-chemical properties of the components in solid state by avoiding a change in their molecular structure. The properties influenced by the co-crystals formation range from an improvement of mechanical features and chemical stability to different solubility. In the scientific research area, the pharmacological field is undoubtedly one of those in which an expansion of the co-crystal knowledge can offer wide benefits. In this work, we described the crystalline structure of hexamethylenetetramine co-crystallized with the isophthalic acid, and we compared it with another co-crystal, showing the same components but different stoichiometry. To give a wider overview on the nature of the interactions behind the observed crystal packing and to rationalize the reasons of its formation, a computational analysis on such structures was carried out. Full article
Show Figures

Graphical abstract

10 pages, 4670 KiB  
Article
Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure
by Diana M. Mena Romero, David Victoria Valenzuela and Cristy L. Azanza Ricardo
Crystals 2020, 10(7), 578; https://doi.org/10.3390/cryst10070578 - 4 Jul 2020
Cited by 3 | Viewed by 2976
Abstract
Cu 2 ZnSnS 4 (CZTS) is a quaternary semiconductor that has emerged as a promising component in solar absorber materials due to its excellent optical properties such as band-gap energy of ca. 1.5 eV and significant absorption coefficient in the order of 10 [...] Read more.
Cu 2 ZnSnS 4 (CZTS) is a quaternary semiconductor that has emerged as a promising component in solar absorber materials due to its excellent optical properties such as band-gap energy of ca. 1.5 eV and significant absorption coefficient in the order of 10 4 cm 1 . Nevertheless, the energy conversion efficiency of CZTS-based devices has not reached the theoretical limits yet, possibly due to the existence of antisite defects (such as Cu Zn or Zn Cu ) and secondary phases. Based on electronic similarities with Zn, Mg has been proposed for Zn substitution in the CZTS structure in the design of alternative semiconductors for thin-film solar cell applications. This work aims to study the properties of the CZTS having Mg incorporated in the structure replacing Zn, with the following stoichiometry: x = 0, 0.25, 0.5, 0.75, and 1 in the formula Cu 2 Zn 1 x Mg x SnS 4 (CZ-MTS). The semiconductor was prepared by the hot injection method, using oleylamine (OLA) as both surfactant and solvent. The presence and concentration of incorporated Mg allowed the fine-tuning of the CZ-MTS semiconductor’s structural and optical properties. Furthermore, it was observed that the inclusion of Mg in the CZTS structure leads to a better embodiment ratio of the Zn during the synthesis, thus reducing the excess of starting precursors. In summary, CZ-MTS is a promising candidate to fabricate high efficient and cost-effective thin-film solar cells made of earth-abundant elements. Full article
Show Figures

Figure 1

Back to TopTop