Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = common property (EA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6696 KiB  
Article
Ethanol Extract of Adlay Hulls Suppresses Acute Myeloid Leukemia Cell Proliferation via PI3K/Akt Pathway Inhibition
by Guangjie Li, Wenyuan Yang, Jiahui Xu, Ziqian Liu, Zhijian Li, Xiaoqiu Wu, Tongtong Li, Ruoxian Wang, Yamin Zhu and Ning Liu
Curr. Issues Mol. Biol. 2025, 47(5), 358; https://doi.org/10.3390/cimb47050358 - 13 May 2025
Viewed by 503
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy in the elderly with frequent relapse and poor prognosis. Limited treatments highlight the need for novel natural anticancer compounds. Adlay, valued for its medicinal and dietary properties, exhibits anti-inflammatory and anticancer effects. However, research [...] Read more.
Acute myeloid leukemia (AML) is a common hematologic malignancy in the elderly with frequent relapse and poor prognosis. Limited treatments highlight the need for novel natural anticancer compounds. Adlay, valued for its medicinal and dietary properties, exhibits anti-inflammatory and anticancer effects. However, research on adlay hulls, particularly their anti-AML bioactive molecules, remains insufficient. This study evaluated the effects of adlay hull ethanol extract (AHE) on AML cell proliferation and apoptosis. AHE was extracted with ethanol and fractionated using n-hexane, ethyl acetate, and n-butanol, followed by silica gel chromatography. Cytotoxicity was assessed via the CCK-8 assay, and mechanisms were analyzed by flow cytometry and Western blotting. The bioactive components were characterized by UPLC-IMS-QTOF-MS. AHE-EA-C (ethyl acetate fraction C) inhibited AML cell proliferation, induced G0/G1 phase arrest, and promoted apoptosis. It suppressed the PI3K/Akt pathway by reducing PI3K and Akt phosphorylation. Using UPLC-IMS-QTOF-MS analysis, a total of 52 compounds with potential anti-AML activity were identified in AHE-EA-C, among which neohesperidin and cycloartanol have been previously reported to exhibit anti-AML activity and thus hold promise as candidates for further development as AML inhibitors. This study is the first to identify adlay hull bioactive components and their anti-AML mechanisms via PI3K/Akt pathway inhibition, providing a foundation for developing natural anti-AML therapies. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 2260 KiB  
Article
Enhancing Understanding of Siloxane Surface Properties and Functional Group Effects on Water Deoxygenation
by Fryad Mohammed Sharif, Sohail Murad and Saif Talal Manji
ChemEngineering 2024, 8(5), 85; https://doi.org/10.3390/chemengineering8050085 - 28 Aug 2024
Viewed by 1851
Abstract
The deoxygenation process in water used in well injection operations is an important matter to eliminate corrosion in the petroleum industry. This study used molecular dynamics simulations to understand the behavior of siloxane surfaces by studying the surface properties with two functional groups [...] Read more.
The deoxygenation process in water used in well injection operations is an important matter to eliminate corrosion in the petroleum industry. This study used molecular dynamics simulations to understand the behavior of siloxane surfaces by studying the surface properties with two functional groups attached to the end of siloxane and their effect on the deoxygenation process. The simulations were performed using LAMMPS to characterize surface properties. Jmol software version 14 was used to generate siloxane chains with (8, 20, and 35) repeat units. We evaluated properties such as total energy, surface tension, and viscosity. Then, we used siloxane as a membrane to compare the efficiency of deoxygenation for both types of functional groups. The results indicated that longer chain lengths increased the total energy and viscosity while decreasing surface tension. Replacing methyl groups with trifluoromethyl (CF3) groups increased all the above mentioned properties in varying proportions. Trifluoromethyl (CF3) groups showed better removal efficiency than methyl (CH3) groups but allowed more water to pass. Furthermore, the simulations were run using the class II potential developed by Sun, Rigby, and others within an explicit-atom (EA) model. This force field is universally applicable to the atomistic simulation of polymers, inorganic small molecules, and common organic molecules. Full article
(This article belongs to the Special Issue State-of-the-Art Membrane Technologies in Chemical Engineering)
Show Figures

Figure 1

13 pages, 2632 KiB  
Article
Green Extraction of Reed Lignin: The Effect of the Deep Eutectic Solvent Composition on the UV-Shielding and Antioxidant Properties of Lignin
by Olga Morozova, Irina Vasil’eva, Galina Shumakovich, Maria Khlupova, Vyacheslav Chertkov, Alla Shestakova and Alexander Yaropolov
Int. J. Mol. Sci. 2024, 25(15), 8277; https://doi.org/10.3390/ijms25158277 - 29 Jul 2024
Cited by 4 | Viewed by 1637
Abstract
Lignin, the second most abundant natural polymer, is a by-product of the biorefinery and pulp and paper industries. This study was undertaken to evaluate the properties and estimate the prospects of using lignin as a by-product of the pretreatment of common reed straw [...] Read more.
Lignin, the second most abundant natural polymer, is a by-product of the biorefinery and pulp and paper industries. This study was undertaken to evaluate the properties and estimate the prospects of using lignin as a by-product of the pretreatment of common reed straw (Phragmites australis) with deep eutectic solvents (DESs) of various compositions: choline chloride/oxalic acid (ChCl/OA), choline chloride/lactic acid (ChCl/LA), and choline chloride/monoethanol amine (ChCl/EA). The lignin samples, hereinafter referred to as Lig-OA, Lig-LA, and Lig-EA, were obtained as by-products after optimizing the conditions of reed straw pretreatment with DESs in order to improve the efficiency of subsequent enzymatic hydrolysis. The lignin was studied using gel penetration chromatography, UV-vis, ATR-FTIR, and 1H and 13C NMR spectroscopy; its antioxidant activity was assessed, and the UV-shielding properties of lignin/polyvinyl alcohol composite films were estimated. The DES composition had a significant impact on the structure and properties of the extracted lignin. The lignin’s ability to scavenge ABTS+• and DPPH radicals, as well as the efficiency of UV radiation shielding, decreased as follows: Lig-OA > Lig-LA > Lig-EA. The PVA/Lig-OA and PVA/Lig-LA films with a lignin content of 4% of the weight of PVA block UV radiation in the UVA range by 96% and 87%, respectively, and completely block UV radiation in the UVB range. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

27 pages, 12181 KiB  
Article
Effect of Different Surface Treatments as Methods of Improving the Mechanical Properties after Repairs of PMMA for Dentures
by Grzegorz Chladek, Sandra Adeeb, Wojciech Pakieła and Neide Pena Coto
Materials 2024, 17(13), 3254; https://doi.org/10.3390/ma17133254 - 2 Jul 2024
Cited by 1 | Viewed by 1387
Abstract
Denture fractures are a common problem in dental practice, and their repair is considered a first option to restore their functional properties. However, the inter-material resistance may become compromised. Typically, the bond between these materials weakens. Therefore, various surface treatment methods may be [...] Read more.
Denture fractures are a common problem in dental practice, and their repair is considered a first option to restore their functional properties. However, the inter-material resistance may become compromised. Typically, the bond between these materials weakens. Therefore, various surface treatment methods may be considered to enhance their mechanical properties. Poly(methyl methacrylate) (PMMA) heat-polymerized resin (HPR) was used as the repaired material, cold-polymerized material (CPR) for the repairs, and different variants of alumina abrasive blasting (AB), methyl methacrylate (M), ethyl acetate (EA), methylene chloride (CH), and isopropyl alcohol (IA) treatments were applied. Finally, combined surface treatments were chosen and analyzed. Surface morphologies after treatments were observed by scanning electron microscopy and the flexural, shear, and impact strengths were tested. AB and chemical treatment with CH, M, and EA was used to improve all mechanical properties, and further improvement of the properties could be achieved by combining both types of treatments. Varied changes in surface morphologies were observed. Treatment with IA yielded less favorable results due to the low impact strength. The best results were achieved for the combination of AB and CH, but during the application of CH it was necessary to strictly control the exposure time. Full article
(This article belongs to the Special Issue Advances in Biomaterials for Dental Applications)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
Effects of Epoxy Resin Value on Waterborne-Epoxy-Resin-Modified Emulsified Asphalt Mixture Performance
by Lieguang Wang, Zirui Zhang, Wenyao Liu, Mingfei Wu, Junyi Shi and Kezhen Yan
Appl. Sci. 2024, 14(4), 1353; https://doi.org/10.3390/app14041353 - 6 Feb 2024
Cited by 7 | Viewed by 1535
Abstract
Although research shows that waterborne epoxy resin emulsified asphalt (WER-EA) is an environmental protection material with potential high resistance to multiple types of pavement distress, its performance is rather complicated and much affected by the curing agent and epoxy resin value. This paper [...] Read more.
Although research shows that waterborne epoxy resin emulsified asphalt (WER-EA) is an environmental protection material with potential high resistance to multiple types of pavement distress, its performance is rather complicated and much affected by the curing agent and epoxy resin value. This paper serves as a follow-up study to the preliminary published research on evaluating the impact of the epoxy value and common curing agents on the performance of asphalt mixtures. Four groups of emulsified asphalt were filtered out to prepare mixture samples, and laboratory tests on mixture performance under high and low temperatures were conducted. Specifically, Marshall and rutting tests were conducted for evaluating mixture resistance to rutting under high temperatures, and indirect tensile tests were conducted to indicate resistance to cracking at low temperatures. Water stability performance was also assessed by comparing the mixture properties before and after water absorption. The results showed that the mixture with an epoxy value of 20 and curing agents using triethylenetetramine (TETA) had the best overall performance among the investigated mixtures, with the highest resistance to high-temperature deformation and water damage. However, more research should be conducted to improve the low-temperature resistance to cracking for WER-EA mixtures. Full article
Show Figures

Figure 1

17 pages, 6028 KiB  
Article
Urushiol-Based Benzoxazine Containing Sulfobetaine Groups for Sustainable Marine Antifouling Applications
by Jing Zhao, Jipeng Chen, Xiaoxiao Zheng, Qi Lin, Guocai Zheng, Yanlian Xu and Fengcai Lin
Polymers 2023, 15(10), 2383; https://doi.org/10.3390/polym15102383 - 19 May 2023
Cited by 16 | Viewed by 2644
Abstract
Benzoxazine resins are new thermosetting resins with excellent thermal stability, mechanical properties, and a flexible molecular design, demonstrating promise for applications in marine antifouling coatings. However, designing a multifunctional green benzoxazine resin-derived antifouling coating that combines resistance to biological protein adhesion, a high [...] Read more.
Benzoxazine resins are new thermosetting resins with excellent thermal stability, mechanical properties, and a flexible molecular design, demonstrating promise for applications in marine antifouling coatings. However, designing a multifunctional green benzoxazine resin-derived antifouling coating that combines resistance to biological protein adhesion, a high antibacterial rate, and low algal adhesion is still challenging. In this study, a high-performance coating with a low environmental impact was synthesized using urushiol-based benzoxazine containing tertiary amines as the precursor, and a sulfobetaine moiety into the benzoxazine group was introduced. This sulfobetaine-functionalized urushiol-based polybenzoxazine coating (poly(U−ea/sb)) was capable of clearly killing marine biofouling bacteria adhered to the coating surface and significantly resisting protein attachment. poly(U−ea/sb) exhibited an antibacterial rate of 99.99% against common Gram negative bacteria (e.g., Escherichia coli and Vibrio alginolyticus) and Gram positive bacteria (e.g., Staphylococcus aureus and Bacillus sp.), with >99% its algal inhibition activity, and it effectively prevented microbial adherence. Here, a dual-function crosslinkable zwitterionic polymer, which used an “offensive-defensive” tactic to improve the antifouling characteristics of the coating was presented. This simple, economic, and feasible strategy provides new ideas for the development of green marine antifouling coating materials with excellent performance. Full article
Show Figures

Graphical abstract

13 pages, 402 KiB  
Article
Experiential Avoidance in Primary Care Providers: Psychometric Properties of the Brazilian “Acceptance and Action Questionnaire” (AAQ-II) and Its Criterion Validity on Mood Disorder-Related Psychological Distress
by Tatiana Berta-Otero, Alberto Barceló-Soler, Jesus Montero-Marin, Shannon Maloney, Adrián Pérez-Aranda, Alba López-Montoyo, Vera Salvo, Marcio Sussumu, Javier García-Campayo and Marcelo Demarzo
Int. J. Environ. Res. Public Health 2023, 20(1), 225; https://doi.org/10.3390/ijerph20010225 - 23 Dec 2022
Cited by 5 | Viewed by 3392
Abstract
Background: A sizeable proportion of Brazilian Primary Care (PC) providers suffer from common mental disorders, such as anxiety and depression. In an effort to cope with job-related distress, PC workers are likely to implement maladaptive strategies such as experiential avoidance (EA). The Acceptance [...] Read more.
Background: A sizeable proportion of Brazilian Primary Care (PC) providers suffer from common mental disorders, such as anxiety and depression. In an effort to cope with job-related distress, PC workers are likely to implement maladaptive strategies such as experiential avoidance (EA). The Acceptance and Action Questionnaire (AAQ-II) is a widely used instrument that evaluates EA but has shown questionable internal consistency in specific populations. This study assesses the psychometric properties of the AAQ-II among Brazilian PC providers, evaluates its convergence and divergence with self-criticism and mindfulness skills, and explores its criterion validity on anxiety and depressive symptoms. Methods: A cross-sectional design was conducted in Brazilian PC services, and the sample included 407 PC workers. The measures evaluated EA, self-criticism, mindfulness, depression, and anxiety. Results: The one-factor model of the AAQ-II replicated the original version structure. The AAQ-II presented good internal consistency among Brazilian PC providers. A multiple regression model demonstrated higher relationships with self-criticism than mindfulness skills. The criterion validity of the AAQ-II on anxiety and depression was stronger in the context of more severe symptoms. Conclusions: The AAQ-II is an appropriate questionnaire to measure the lack of psychological flexibility among Brazilian PC workers in the sense of EA. Full article
(This article belongs to the Section Mental Health)
24 pages, 8667 KiB  
Article
Ambient-Visible-Light-Mediated Enhanced Degradation of UV Stabilizer Bis(4-hydroxyphenyl)methanone by Nanosheet-Assembled Cobalt Titanium Oxide: A Comparative and DFT-Assisted Investigation
by Po-Hsin Mao, Ta Cong Khiem, Eilhann Kwon, Hou-Chien Chang, Ha Manh Bui, Xiaoguang Duan, Hongta Yang, Suresh Ghotekar, Wei-Hsin Chen, Yu-Chih Tsai and Kun-Yi Andrew Lin
Water 2022, 14(20), 3318; https://doi.org/10.3390/w14203318 - 20 Oct 2022
Cited by 4 | Viewed by 2422
Abstract
Bis(4-hydroxyphenyl)methanone (BHPM), a common ultraviolet stabilizer and filter (USF), is extensively added in sunscreens; however, BHPM is proven as an endocrine disruptor, posing a serious threat to aquatic ecology, and BHPM should be then removed. As sulfate radical (SO4•−) could [...] Read more.
Bis(4-hydroxyphenyl)methanone (BHPM), a common ultraviolet stabilizer and filter (USF), is extensively added in sunscreens; however, BHPM is proven as an endocrine disruptor, posing a serious threat to aquatic ecology, and BHPM should be then removed. As sulfate radical (SO4•−) could be useful for eliminating emerging contaminants, oxone appears as a favorable source reagent of SO4•− for degrading BHPM. Even though cobalt is a useful catalyst for activating oxone to generate SO4•−, it would be even more promising to utilize ambient-visible-light irradiation to enhance oxone activation using cobaltic catalysts. Therefore, in contrast to the conventional cobalt oxide, cobalt titanium oxide (CTO) was investigated for chemical and photocatalytic activation of oxone to eliminate BHPM from water. Especially, a special morphology of nanosheet-assembled configuration of CTO was designed to maximize active surfaces and sites of CTO. Thus, CTO outperforms Co3O4 and TiO2 in degrading BHPM via oxone activation. Furthermore, the substituent of Ti enabled CTO to enhance absorption of visible light and possessed a much smaller Eg. These photocatalytic properties intensified CTO’s activity for oxone activation. CTO possessed a significantly smaller Ea of degradation of USFs than other catalytic systems. Mechanistic insight for degrading BHPM by CTO + oxone was explicated for identifying contribution of reactive oxygen species to BHPM degradation. The BHPM degradation pathway was also investigated and unveiled in details via the DFT calculation. These results validated that CTO is a superior cobaltic alternative for activating oxone to eliminate BHPM. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 5356 KiB  
Article
A Finite Element Investigation on Material and Design Parameters of Ventricular Septal Defect Occluder Devices
by Zhuo Zhang, Yan Xiong, Jinpeng Hu, Xuying Guo, Xianchun Xu, Juan Chen, Yunbing Wang and Yu Chen
J. Funct. Biomater. 2022, 13(4), 182; https://doi.org/10.3390/jfb13040182 - 9 Oct 2022
Cited by 4 | Viewed by 2847
Abstract
Background and Objective: Ventricular septal defects (VSDs) are the most common form of congenital heart defects. The incidence of VSD accounts for 40% of all congenital heart defects (CHDs). With the development of interventional therapy technology, transcatheter VSD closure was introduced as an [...] Read more.
Background and Objective: Ventricular septal defects (VSDs) are the most common form of congenital heart defects. The incidence of VSD accounts for 40% of all congenital heart defects (CHDs). With the development of interventional therapy technology, transcatheter VSD closure was introduced as an alternative to open heart surgery. Clinical trials of VSD occluders have yielded promising results, and with the development of new material technologies, biodegradable materials have been introduced into the application of occluders. At present, the research on the mechanical properties of occluders is focused on experimental and clinical trials, and numerical simulation is still a considerable challenge due to the braided nature of the VSD occluder. Finite element analysis (FEA) has proven to be a valid and efficient method to virtually investigate and optimize the mechanical behavior of minimally invasive devices. The objective of this study is to explore the axial resistive performance through experimental and computational testing, and to present the systematic evaluation of the effect of various material and braid parameters by FEA. Methods: In this study, an experimental test was used to investigate the axial resistive force (ARF) of VSD Nitinol occluders under axial displacement loading (ADL), then the corresponding numerical simulation was developed and compared with the experimental results to verify the effectiveness. Based on the above validation, numerical simulations of VSD occluders with different materials (polydioxanone (PDO) and Nitinol with different austenite moduli) and braid parameters (wire density, wire diameter, and angle between left and right discs) provided a clear presentation of mechanical behaviors that included the maximal axial resistive force (MARF), maximal axial displacement (MAD) and initial axial stiffness (IAS), the stress distribution and the maximum principal strain distribution of the device under ADL. Results: The results showed that: (1) In the experimental testing, the axial resistive force (ARF) of the tested occluder, caused by axial displacement loading (ADL), was recorded and it increased linearly from 0 to 4.91 N before reducing. Subsequent computational testing showed that a similar performance in the ARF was experienced, albeit that the peak value of ARF was smaller. (2) The investigated design parameters of wire density, wire diameter and the angle between the left and right discs demonstrated an effective improvement (7.59%, 9.48%, 1.28%, respectively, for MARF, and 1.28%, 1.80%, 3.07%, respectively, for IAS) for the mechanical performance for Nitinol occluders. (3) The most influencing factor was the material; the performance rose by 30% as the Nitinol austenite modulus (EA) increased by 10,000 MPa. The performance of Nitinol was better than that of PDO for certain wire diameters, and the performance improved more obviously (1.80% for Nitinol and 0.64% for PDO in IAS, 9.48% for Nitinol and 2.00% for PDO in MARF) with the increase in wire diameter. (4) For all of the models, the maximum stresses under ADL were distributed at the edge of the disc on the loaded side of the occluders. Conclusions: The experimental testing presented in the study showed that the mechanical performance of the Nitinol occluder and the MARF prove that it has sufficient ability to resist falling out from its intended placement. This study also represents the first experimentally validated computational model of braided occluders, and provides a perception of the influence of geometrical and material parameters in these systems. The results could further provide meaningful suggestions for the design of biodegradable VSD closure devices and to realize a series of applications for biodegradable materials in VSD. Full article
Show Figures

Figure 1

16 pages, 287 KiB  
Article
Solving Integral Equations Using Weakly Compatible Mappings via D*-Metric Spaces
by Roqia Butush, Zead Mustafa and M. M. M. Jaradat
Axioms 2022, 11(5), 189; https://doi.org/10.3390/axioms11050189 - 20 Apr 2022
Viewed by 1897
Abstract
We introduce a new pair of mappings (S,T) on D*-metric spaces called DS*-W.C. and DRS*-W.C. Many examples are presented to show the difference between these mappings and other types of [...] Read more.
We introduce a new pair of mappings (S,T) on D*-metric spaces called DS*-W.C. and DRS*-W.C. Many examples are presented to show the difference between these mappings and other types of mappings in the literature. Moreover, we obtain several common fixed point results by using these types of mappings and the (E.A) property. We then employ the fixed point results to establish the existence and uniqueness of a solution for a class of nonlinear integral equations. Full article
(This article belongs to the Special Issue Fixed Point Theory and Its Related Topics III)
17 pages, 3590 KiB  
Article
Value-Added Use of Waste PET in Rubberized Asphalt Materials for Sustainable Pavement
by Xiong Xu, Yaming Chu, Yi Luo, Qiaoyun Wu, Xuyong Chen and Suxun Shu
Appl. Sci. 2022, 12(2), 871; https://doi.org/10.3390/app12020871 - 15 Jan 2022
Cited by 6 | Viewed by 2385
Abstract
Waste poly(ethylene terephthalate) (PET) drinking bottles and end-of-life scrap rubber tires are common municipal solid wastes discarded and produced every day, which are usually disposed of in landfills and stockpiles, occupying a great quantity of land and causing serious environmental issues. This study [...] Read more.
Waste poly(ethylene terephthalate) (PET) drinking bottles and end-of-life scrap rubber tires are common municipal solid wastes discarded and produced every day, which are usually disposed of in landfills and stockpiles, occupying a great quantity of land and causing serious environmental issues. This study aims to first turn waste PET into two value-added derived additives under the chemical treatment of two amines, namely triethylenetetramine (TETA) and ethanolamine (EA), respectively, and then adopt them in association with crumb rubber (CR) to modify virgin bitumen for preparing various rubberized asphalt mixtures. Subsequently, the high- and low-temperature properties of the rubberized binder modified by PET additives (PET-TETA and PET-EA) were comparatively characterized through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests, while the rutting resistance, fatigue resistance, and dynamic modulus of the further fabricated mixtures were evaluated and validated through mixture tests. The results obtained indicate that 2 wt.% PET-TETA and PET-EA contribute to increase the rutting failure temperature of asphalt rubber from 82.2 °C to 85.5 °C and 84.2 °C, respectively, retaining the high grade of PG 82; the low-temperature grade of asphalt rubber slightly decreased from PG-28 to PG-22 as the additive was added; the rut depth slightly changed from 3.10 mm to nearly 3.70 mm; and PET-TETA exhibits the potential to be capable of extending the fatigue life of asphalt rubber in contrast with PET-EA at different stress levels within 450 kPa. Based on the findings of this study, the developed recycling approach is considered to be applicable to not only alleviate the environmental concerns caused by the landfills and stockpiles of those wastes but also make them valuable for building more durable pavement. Full article
Show Figures

Figure 1

18 pages, 4145 KiB  
Article
Erinacine A Prevents Lipopolysaccharide-Mediated Glial Cell Activation to Protect Dopaminergic Neurons against Inflammatory Factor-Induced Cell Death In Vitro and In Vivo
by Shou-Lun Lee, Jing-Ya Hsu, Ting-Chun Chen, Chun-Chih Huang, Tzong-Yuan Wu and Ting-Yu Chin
Int. J. Mol. Sci. 2022, 23(2), 810; https://doi.org/10.3390/ijms23020810 - 12 Jan 2022
Cited by 27 | Viewed by 4691
Abstract
Hericium erinaceus (HE) is a common edible mushroom consumed in several Asian countries and considered to be a medicinal mushroom with neuroprotective effects. Erinacine A (EA) is a bioactive compound in Hericium erinaceus mycelium (HEM) that has been shown to have a neuroprotective [...] Read more.
Hericium erinaceus (HE) is a common edible mushroom consumed in several Asian countries and considered to be a medicinal mushroom with neuroprotective effects. Erinacine A (EA) is a bioactive compound in Hericium erinaceus mycelium (HEM) that has been shown to have a neuroprotective effect against neurodegenerative diseases, e.g., Parkinson’s disease (PD). Although the etiology of PD is still unclear, neuroinflammation may play an important role in causing dopaminergic neuron loss, which is a pathological hallmark of PD. However, glial cell activation has a close relationship with neuroinflammation. Thus, this study aimed to investigate the anti-neuroinflammatory and neuroprotective effects of EA on lipopolysaccharide (LPS)-induced glial cell activation and neural damage in vitro and in vivo. For the in vitro experiments, glial cells, BV-2 microglial cells and CTX TNA2 astrocytes were pretreated with EA and then stimulated with LPS and/or IFN-γ. The expression of proinflammatory factors in the cells and culture medium was analyzed. In addition, differentiated neuro-2a (N2a) cells were pretreated with EA or HEM and then stimulated with LPS-treated BV-2 conditioned medium (CM). The cell viability and the amount of tyrosine hydroxylase (TH) and mitogen-activated protein kinases (MAPKs) were analyzed. In vivo, rats were given EA or HEM by oral gavage prior to injection of LPS into the substantia nigra (SN). Motor coordination of the rats and the expression of proinflammatory mediators in the midbrain were analyzed. EA pretreatment prevented LPS-induced iNOS expression and NO production in BV-2 cells and TNF-α expression in CTX TNA2 cells. In addition, both EA and HEM pretreatment significantly increased cell viability and TH expression and suppressed the phosphorylation of JNK and NF- κB in differentiated N2a cells treated with CM. In vivo, both EA and HEM significantly improved motor dysfunction in the rotarod test and the amphetamine-induced rotation test and reduced the expression of TNF-α, IL-1β and iNOS in the midbrain of rats intranigrally injected with LPS. The results demonstrate that EA ameliorates LPS-induced neuroinflammation and has neuroprotective properties. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Neurological Diseases)
Show Figures

Figure 1

18 pages, 342 KiB  
Article
Association of Adiponectin, Leptin and Resistin Plasma Concentrations with Echocardiographic Parameters in Patients with Coronary Artery Disease
by Kamila Puchałowicz, Karolina Kłoda, Violetta Dziedziejko, Monika Rać, Andrzej Wojtarowicz, Dariusz Chlubek and Krzysztof Safranow
Diagnostics 2021, 11(10), 1774; https://doi.org/10.3390/diagnostics11101774 - 26 Sep 2021
Cited by 10 | Viewed by 3177
Abstract
The imbalanced network of adipokines may contribute to the development of systemic low-grade inflammation, metabolic diseases and coronary artery disease (CAD). In the last decade, three classic adipokines—adiponectin, leptin and resistin—have been of particular interest in studies of patients with CAD due to [...] Read more.
The imbalanced network of adipokines may contribute to the development of systemic low-grade inflammation, metabolic diseases and coronary artery disease (CAD). In the last decade, three classic adipokines—adiponectin, leptin and resistin—have been of particular interest in studies of patients with CAD due to their numerous properties in relation to the cardiovascular system. This has directed our attention to the association of adipokines with cardiac structure and function and the development of heart failure (HF), a common end effect of CAD. Thus, the purpose of this study was to analyse the associations of plasma concentrations of adiponectin, leptin and resistin with parameters assessed in the echocardiographic examinations of CAD patients. The presented study enrolled 167 Caucasian patients (133 male; 34 female) with CAD. Anthropometric, echocardiographic and basic biochemical measurements, together with plasma concentrations of adiponectin, leptin and resistin assays, were performed in each patient. Adiponectin concentrations were negatively associated with left ventricular ejection fraction (LVEF) and shortening fraction (LVSF), and positively associated with mitral valve E/A ratio (E/A), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter LVESD, and left atrium diameter (LAD). Resistin concentrations were negatively associated with E/A. Leptin concentrations, although correlated with HF severity assessed by the New York Heart Association (NYHA) Functional Classification, were not independently associated with the echocardiographic parameters of cardiac structure or function. In conclusion, adiponectin and resistin, but not leptin, are associated with the echocardiographic parameters of cardiac remodelling and dysfunction. These associations suggest that adiponectin and resistin might be involved in mechanisms of cardiac remodelling or compensative response. We also suggest the possible benefits of adiponectin and resistin level measurements in the monitoring of patients with CAD. Full article
(This article belongs to the Collection Biomarkers in Medicine)
7 pages, 243 KiB  
Article
Note on Common Fixed Point Theorems in Convex Metric Spaces
by Anil Kumar and Aysegul Tas
Axioms 2021, 10(1), 28; https://doi.org/10.3390/axioms10010028 - 27 Feb 2021
Cited by 4 | Viewed by 2439
Abstract
In the present paper, we pointed out that there is a gap in the proof of the main result of Rouzkard et al. (The Bulletin of the Belgian Mathematical Society 2012). Then after, utilizing the concept of (E.A.) property in convex metric space, [...] Read more.
In the present paper, we pointed out that there is a gap in the proof of the main result of Rouzkard et al. (The Bulletin of the Belgian Mathematical Society 2012). Then after, utilizing the concept of (E.A.) property in convex metric space, we obtained an alternative and correct version of this result. Finally, it is clarified that in the theory of common fixed point, the notion of (E.A.) property in the set up of convex metric space develops some new dimensions in comparison to the hypothesis that a range set of one map is contained in the range set of another map. Full article
(This article belongs to the Special Issue Theory and Application of Fixed Point)
15 pages, 14057 KiB  
Article
Preparation and Characterization of MgO-Modified Rice Straw Biochars
by Xianxian Qin, Jixin Luo, Zhigao Liu and Yunlin Fu
Molecules 2020, 25(23), 5730; https://doi.org/10.3390/molecules25235730 - 4 Dec 2020
Cited by 28 | Viewed by 3545
Abstract
Rice straw is a common agricultural waste. In order to increase the added value of rice straw and improve the performance of rice straw biochar. MgO-modified biochar (MRBC) was prepared from rice straw at different temperatures, pyrolysis time and MgCl2 concentrations. The [...] Read more.
Rice straw is a common agricultural waste. In order to increase the added value of rice straw and improve the performance of rice straw biochar. MgO-modified biochar (MRBC) was prepared from rice straw at different temperatures, pyrolysis time and MgCl2 concentrations. The microstructure, chemical and crystal structure were studied using X-ray diffraction (XRD), a Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption desorption isotherms and Elementary Analysis (EA). The results showed that the pyrolysis temperature had significant influence on the structure and physicochemical property of MRBCs. MRBC-2 h has the richest microporous structure while MRBC-2 m has the richest mesoporous structure. The specific surface area (from 9.663 to 250.66 m2/g) and pore volume (from 0.042 to 0.158 cm3/g) of MRBCs increased as temperature rose from 300 to 600 °C. However, it was observed MgCl2 concentrations and pyrolysis time had no significant influence on pore structure of MRBCs. As pyrolysis temperature increased, pH increased and more oxygen-containing functional groups and mineral salts were formed, while MgO-modified yield, volatile matter, total content of hydrogen, oxygen, nitrogen, porosity and average pore diameter decreased. In addition, MRBCs formed at high temperature showed high C content with a low O/C and H/C ratios. Full article
(This article belongs to the Special Issue Activated Carbons—Production and Applications)
Show Figures

Figure 1

Back to TopTop