Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = coaxial through silicon via

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 10403 KiB  
Article
Efficient Thermal-Stress Coupling Design of Chiplet-Based System with Coaxial TSV Array
by Xianglong Wang, Jiaming Su, Dongdong Chen, Di Li, Gaoliang Li and Yintang Yang
Micromachines 2023, 14(8), 1493; https://doi.org/10.3390/mi14081493 - 25 Jul 2023
Cited by 1 | Viewed by 2256
Abstract
In this research, an efficient thermal-stress coupling design method for a Chiplet-based system with a coaxial through silicon via (CTSV) array is developed by combining the support vector machine (SVM) model and particle swarm optimization algorithm with linear decreasing inertia weight (PSO-LDIW). The [...] Read more.
In this research, an efficient thermal-stress coupling design method for a Chiplet-based system with a coaxial through silicon via (CTSV) array is developed by combining the support vector machine (SVM) model and particle swarm optimization algorithm with linear decreasing inertia weight (PSO-LDIW). The complex and irregular relationship between the structural parameters and critical indexes is analyzed by finite element simulation. According to the simulation data, the SVM model is adopted to characterize the relationship between structural parameters and critical indexes of the CTSV array. Based on the desired critical indexes of the CTSV array, the multi-objective evaluation function is established. Afterwards, the structural parameters of the CTSV array are optimized through the PSO-LDIW algorithm. Finally, the effectiveness of the developed method is verified by the finite element simulation. The simulated peak temperature, peak stress of the Chiplet-based system, and peak stress of the copper column (306.16 K, 28.48 MPa, and 25.76 MPa) well agree with the desired targets (310 K, 30 MPa, and 25 MPa). Therefore, the developed thermal-stress coupling design method can effectively design CTSV arrays for manufacturing high-performance interconnect structures applied in Chiplet-based systems. Full article
(This article belongs to the Special Issue Piezoelectric Materials, Devices and Integrated Systems)
Show Figures

Figure 1

11 pages, 2895 KiB  
Article
Thermal-Stress Coupling Optimization for Coaxial through Silicon Via
by Dongdong Chen, Yintang Yang, Xianglong Wang, Di Li, Yi Liang and Changqing Xu
Symmetry 2023, 15(2), 264; https://doi.org/10.3390/sym15020264 - 17 Jan 2023
Cited by 7 | Viewed by 2017
Abstract
In this paper, a thermal-stress coupling optimization strategy for coaxial through silicon via (TSV) is developed based on the finite element method (FEM), artificial neural network (ANN) model and particle swarm optimization (PSO) algorithm. In order to analyze the effect of design parameters [...] Read more.
In this paper, a thermal-stress coupling optimization strategy for coaxial through silicon via (TSV) is developed based on the finite element method (FEM), artificial neural network (ANN) model and particle swarm optimization (PSO) algorithm. In order to analyze the effect of design parameters on the thermal-stress distribution of coaxial TSV, the FEM simulations of coaxial TSV are conducted by COMSOL Multiphysics. The structure of coaxial TSV is symmetric. The mapping relationships between the design parameters and performance indexes are described by ANN models based on the simulation data of FEM. In addition, the multi-objective optimization function is formulated based on the desired performance indexes, and then the design parameters are optimized by the modified PSO algorithm. Based on the optimized design parameters, the effectiveness of the developed method is validated by FEM simulations. The simulated performance indexes agree well with the desired ones, which implies that the design parameters of coaxial TSV can be optimized to control the thermal-stress distribution. Therefore, the thermal-stress coupling optimization of coaxial TSV can achieve thermal-stress management to improve its reliability. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

12 pages, 948 KiB  
Article
Electrical Characterization of Through-Silicon-via-Based Coaxial Line for High-Frequency 3D Integration (Invited Paper)
by Zhibo Zhao, Jinkai Li, Haoyun Yuan, Zeyu Wang, Giovanni Gugliandolo, Nicola Donato, Giovanni Crupi, Liming Si and Xiue Bao
Electronics 2022, 11(20), 3417; https://doi.org/10.3390/electronics11203417 - 21 Oct 2022
Cited by 5 | Viewed by 3489
Abstract
Through-silicon-via (TSV)-based coaxial line techniques can reduce the high-frequency loss due to the low resistivity in the silicon substrate and thus can improve the efficiency of vertical signal transmission. Moreover, a TSV-based coaxial structure allows easily realizing the impedance matching in RF/microwave systems [...] Read more.
Through-silicon-via (TSV)-based coaxial line techniques can reduce the high-frequency loss due to the low resistivity in the silicon substrate and thus can improve the efficiency of vertical signal transmission. Moreover, a TSV-based coaxial structure allows easily realizing the impedance matching in RF/microwave systems for excellent electrical performance. However, due to the limitations of existing available dielectric materials and the difficulties and challenges in the manufacturing process, ideal coaxial TSVs are not easy to obtain, and thus, the achieved electrical performance might be unexpected. In order to increase the flexibility of designing and manufacturing TSV-based coaxial structures and to better evaluate the fabricated devices, modeling and analysis theories of the corresponding high-frequency electrical performance are proposed in the paper. The theories are finally well validated using the finite-element simulation results, hereby providing guiding rules for selecting materials and improving manufacturing techniques in the practical process, so as to optimize the high-frequency performance of the TSV structures. Full article
(This article belongs to the Special Issue Advanced RF, Microwave Engineering, and High-Power Microwave Sources)
Show Figures

Figure 1

10 pages, 3208 KiB  
Article
Coaxial Electrospinning Construction Si@C Core–Shell Nanofibers for Advanced Flexible Lithium-Ion Batteries
by Li Zeng, Hongxue Xi, Xingang Liu and Chuhong Zhang
Nanomaterials 2021, 11(12), 3454; https://doi.org/10.3390/nano11123454 - 20 Dec 2021
Cited by 23 | Viewed by 4501
Abstract
Silicon (Si) is expected to be a high-energy anode for the next generation of lithium-ion batteries (LIBs). However, the large volume change along with the severe capacity degradation during the cycling process is still a barrier for its practical application. Herein, we successfully [...] Read more.
Silicon (Si) is expected to be a high-energy anode for the next generation of lithium-ion batteries (LIBs). However, the large volume change along with the severe capacity degradation during the cycling process is still a barrier for its practical application. Herein, we successfully construct flexible silicon/carbon nanofibers with a core–shell structure via a facile coaxial electrospinning technique. The resultant Si@C nanofibers (Si@C NFs) are composed of a hard carbon shell and the Si-embedded amorphous carbon core framework demonstrates an initial reversible capacity of 1162.8 mAh g−1 at 0.1 A g−1 with a retained capacity of 762.0 mAh g−1 after 100 cycles. In addition, flexible LIBs assembled with Si@C NFs were hardly impacted under an extreme bending state, illustrating excellent electrochemical performance. The impressive performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with a hierarchical porous structure, indicating that the novel Si@C NFs fabricated using this electrospinning technique have great potential for advanced flexible energy storage. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Electrochemical Energy Storage)
Show Figures

Figure 1

12 pages, 3951 KiB  
Article
A Novel 3D Encapsulation Structure Based on Subwavelength Structure and Inserted Pyrex Glass for RF MEMS Infrared Detectors
by Jicong Zhao, Mingmin Ge, Chenguang Song, Ling Sun and Haiyan Sun
Electronics 2019, 8(9), 974; https://doi.org/10.3390/electronics8090974 - 31 Aug 2019
Cited by 4 | Viewed by 2830
Abstract
A novel wafer-level three-dimensional (3D) encapsulation structure was designed for radio-frequency microelectromechanical system (RF MEMS) infrared detectors and investigated by using the finite element method (FEM) simulation. A subwavelength structure with a circular array of coaxial apertures was designed to obtain an extraordinary [...] Read more.
A novel wafer-level three-dimensional (3D) encapsulation structure was designed for radio-frequency microelectromechanical system (RF MEMS) infrared detectors and investigated by using the finite element method (FEM) simulation. A subwavelength structure with a circular array of coaxial apertures was designed to obtain an extraordinary optical transmission (EOT) on top of a silicon substrate. For perpendicular incident light, a maximum transmission of 56% can be achieved in the long-wave infrared (LWIR) region and the transmission bandwidth covered almost the full LWIR region. Moreover, the maximum transmission could be further promoted with an increase in the incident angle. The vertical silicon vias, insulated by inserted Pyrex glass, were used to generate electrical contacts. With the optimized structure parameters, a feed-through level lower than −82 dB, and a transmission coefficient of one single via of more than −0.032 dB were obtained at a frequency from 0 to 2 GHz, which contributed to the low-loss transmission of the RF signals. Due to the matched thermal expansion coefficients (TECs) between silicon and Pyrex glass, the proposed via structure has excellent thermal reliability. Moreover, its thermal stress is much less than that of a conventional through-silicon via (TSV) structure. These calculated results demonstrate that the proposed 3D encapsulation structure shows enormous potential in RF MEMS infrared detector applications. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

12 pages, 6059 KiB  
Article
Coaxial Printing of Silicone Elastomer Composite Fibers for Stretchable and Wearable Piezoresistive Sensors
by Zhenhua Tang, Shuhai Jia, Xuesong Shi, Bo Li and Chenghao Zhou
Polymers 2019, 11(4), 666; https://doi.org/10.3390/polym11040666 - 11 Apr 2019
Cited by 52 | Viewed by 6750
Abstract
Despite the tremendous efforts dedicated to developing various wearable piezoresistive sensors with sufficient stretchability and high sensitivity, challenges remain pertaining to fabrication scalability, cost, and efficiency. In this study, a facile, scalable, and low-cost coaxial printing strategy is employed to fabricate stretchable and [...] Read more.
Despite the tremendous efforts dedicated to developing various wearable piezoresistive sensors with sufficient stretchability and high sensitivity, challenges remain pertaining to fabrication scalability, cost, and efficiency. In this study, a facile, scalable, and low-cost coaxial printing strategy is employed to fabricate stretchable and flexible fibers with a core–sheath structure for wearable strain sensors. The highly viscous silica-modified silicone elastomer solution is used to print the insulating sheath layer, and the silicone elastomer solutions containing multi-walled carbon nanotubes (CNTs) are used as the core inks to print the conductive inner layer. With the addition of silica powders as viscosifiers, silica-filled silicone ink (sheath ink) converts to printable ink. The dimensions of the printed coaxial fibers can be flexibly controlled via adjusting the extrusion pressure of the inks. In addition, the electro-mechanical responses of the fiber-shaped strain sensors are investigated. The printed stretchable and wearable fiber-like CNT-based strain sensor exhibits outstanding sensitivities with gauge factors (GFs) of 1.4 to 2.5 × 106, a large stretchability of 150%, and excellent waterproof performance. Furthermore, the sensor can detect a strain of 0.1% and showed stable responses for over 15,000 cycles (high durability). The printed fiber-shaped sensor demonstrated capabilities of detecting and differentiating human joint movements and monitoring balloon inflation. These results obtained demonstrate that the one-step printed fiber-like strain sensors have potential applications in wearable devices, soft robotics, and electronic skins. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop