Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = coastal transportation infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3235 KiB  
Article
Research on the Characteristics of the Aeolian Environment in the Coastal Sandy Land of Mulan Bay, Hainan Island
by Zhong Shuai, Qu Jianjun, Zhao Zhizhong and Qiu Penghua
J. Mar. Sci. Eng. 2025, 13(8), 1506; https://doi.org/10.3390/jmse13081506 - 5 Aug 2025
Abstract
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation [...] Read more.
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation instrument from 2020 to 2024, studying the coastal aeolian environment and sediment transport distribution characteristics in the region. Its findings provide a theoretical basis for comprehensively analyzing the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results show the following: (1) The annual average threshold wind velocity for sand movement in the study area is 6.84 m/s, and the wind speed frequency (frequency of occurrence) is 51.54%, dominated by easterly (NE, ENE) and southerly (S, SSE) winds. (2) The drift potential (DP) refers to the potential amount of sediment transported within a certain time and spatial range, and the annual drift potential (DP) and resultant drift potential (RDP) of Mulan Bay from 2020 to 2024 were 550.82 VU and 326.88 VU, respectively, indicating a high-energy wind environment. The yearly directional wind variability index (RDP/DP) was 0.59, classified as a medium ratio and indicating blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 249.45°, corresponding to a WSW direction, indicating that the sand in Mulan Bay is generally transported in the southwest direction. (3) When the measured data extracted from the sand accumulation instrument in the study area from 2020 to 2024 were used for statistical analysis, the results showed that the total sediment transport rate (the annual sediment transport of the observation section) in the study area was 110.87 kg/m·a, with the maximum sediment transport rate in the NE direction being 29.26 kg/m·a. These results suggest that when sand fixation systems are constructed for relevant infrastructure in the region, the construction direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 327
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

20 pages, 7090 KiB  
Article
The Influence of Hard Protection Structures on Shoreline Evolution in Riohacha, Colombia
by Marta Fernández-Hernández, Luis Iglesias, Jairo Escobar, José Joaquín Ortega, Jhonny Isaac Pérez-Montiel, Carlos Paredes and Ricardo Castedo
Appl. Sci. 2025, 15(14), 8119; https://doi.org/10.3390/app15148119 - 21 Jul 2025
Viewed by 571
Abstract
Over the past 50 years, coastal erosion has become an increasingly critical issue worldwide, and Colombia’s Caribbean coast is no exception. In urban areas, this challenge is further complicated by hard protection structures, which, while often implemented as immediate solutions, can disrupt sediment [...] Read more.
Over the past 50 years, coastal erosion has become an increasingly critical issue worldwide, and Colombia’s Caribbean coast is no exception. In urban areas, this challenge is further complicated by hard protection structures, which, while often implemented as immediate solutions, can disrupt sediment transport and trigger unintended long-term consequences. This study examines shoreline changes in Riohacha, the capital of La Guajira Department, over a 35-year period (1987–2022), focusing on the impacts of coastal protection structures—specifically, the construction of seven groins and a seawall between 2006 and 2009—on coastal dynamics. Using twelve images (photographs and satellite) and the Digital Shoreline Analysis System (DSAS), the evolution of both beaches and cliffs has been analyzed. The results reveal a dramatic shift in shoreline behavior: erosion rates of approximately 0.5 m/year prior to the interventions transitioned to accretion rates of up to 11 m/year within the groin field, where rapid infill occurred. However, this sediment retention has exacerbated erosion in downstream cliff areas, with retreat rates reaching 1.8 ± 0.2 m/year. To anticipate future coastal evolution, predictive models were applied through 2045, providing insights into potential risks for infrastructure and urban development. These findings highlight the need for a strategic, long-term approach to coastal management that considers both the benefits and unintended consequences of engineering interventions. Full article
Show Figures

Figure 1

31 pages, 7121 KiB  
Article
Bidirectional Adaptation of Shared Autonomous Vehicles and Old Towns’ Urban Spaces: The Views of Residents on the Present
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(7), 395; https://doi.org/10.3390/wevj16070395 - 14 Jul 2025
Viewed by 325
Abstract
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow [...] Read more.
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow alleys, dense development, and sensitive cultural landscapes—shared autonomous vehicle adoption raises critical spatial and social questions. This study employs a qualitative, user-centered approach based on the ripple model to examine residents’ perceptions across four dimensions: residential patterns, parking land use, regional accessibility, and street-level infrastructure. Semi-structured interviews with 27 participants reveal five key findings: (1) public trust depends on transparent decision-making and safety guarantees; (2) shared autonomous vehicles may reshape generational residential clustering; (3) the short-term parking demand remains stable, but the long-term reuse of space is feasible; (4) shared autonomous vehicles could enhance accessibility in historic cores; (5) transport systems may evolve toward intelligent, human-centered designs. Based on these insights, the study proposes three strategies: (1) transparent risk assessment using explainable artificial intelligence and digital twins; (2) polycentric development to diversify land use; (3) hierarchical street retrofitting to balance mobility and preservation. While this study is limited by its qualitative scope and absence of simulation, it offers a framework for culturally sensitive, small-scale interventions supporting sustainable mobility transitions in historic urban contexts. Full article
Show Figures

Figure 1

14 pages, 3647 KiB  
Article
The Characteristics of the Aeolian Environment in the Coastal Sandy Land of Boao Jade Belt Beach, Hainan Island
by Shuai Zhong, Jianjun Qu, Zhizhong Zhao and Penghua Qiu
Atmosphere 2025, 16(7), 845; https://doi.org/10.3390/atmos16070845 - 11 Jul 2025
Viewed by 202
Abstract
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations [...] Read more.
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations and omnidirectional sand accumulation instruments from 2020 to 2024 to study the coastal aeolian environment and sediment transport distribution characteristics in the region. The findings provide a theoretical basis for comprehensive analyses of the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results showed the following: (1) The annual average threshold wind velocity for sand movement in the study area was 6.13 m/s, and the wind speed frequency was 20.97%, mainly dominated by easterly winds (NNE, NE) and southerly winds (S). (2) The annual drift potential (DP) and resultant drift potential (RDP) of Boao Jade Belt Beach from 2020 to 2024 were 125.99 VU and 29.59 VU, respectively, indicating a low-energy wind environment. The yearly index of directional wind variability (RDP/DP) was 0.23, which is classified as a small ratio and indicates blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 329.41°, corresponding to the NNW direction, indicating that the sand on Boao Jade Belt Beach is generally transported in the southwest direction. (3) When the measured data from the sand accumulation instrument in the study area from 2020 to 2024 were used for a statistical analysis, the results showed that the total sediment transport rate in the study area was 39.97 kg/m·a, with the maximum sediment transport rate in the S direction being 17.74 kg/m·a. These results suggest that, when sand fixation systems are constructed for relevant infrastructure in the region, the direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 5107 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Aerosol Optical Depth in Zhejiang Province: Insights from Land Use Dynamics and Transportation Networks Based on Remote Sensing
by Qi Wang, Ben Wang, Wanlin Kong, Jiali Wu, Zhifeng Yu, Xiwen Wu and Xiaohong Yuan
Sustainability 2025, 17(13), 6126; https://doi.org/10.3390/su17136126 - 3 Jul 2025
Viewed by 296
Abstract
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road [...] Read more.
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road network density metrics (2014–2020), to investigate the spatiotemporal evolution of AOD in Zhejiang Province and its synergistic correlations with urbanization patterns and transportation infrastructure. By integrating MODIS_1KM AOD product, grid-based road network density mapping, land use dynamic degree modeling, and transfer matrix analysis, this study systematically evaluates the interdependencies among aerosol loading, impervious surface expansion, and transportation network intensification. The results indicate that during the study period (2000–2020), the provincial AOD level shows a significant declining trend, with obvious spatial heterogeneity: the AOD values in eastern coastal industrial zones and urban agglomerations continue to increase, with lower values dominating southwestern forested highlands. Meanwhile, statistical analyses confirm highly positive correlations between AOD, impervious surface coverage, and road network density, emphasizing the dominant role of anthropogenic activities in aerosol accumulation. These findings provide actionable insights for enhancing land-use zoning, minimizing vehicular emissions, and developing spatially targeted air quality management strategies in rapidly urbanizing regions. This study provides a solid scientific foundation for advancing environmental sustainability by supporting policy development that balances urban expansion and air quality. It contributes to building more sustainable and resilient cities in Zhejiang Province. Full article
Show Figures

Figure 1

18 pages, 7348 KiB  
Article
Augmenting Coral Growth on Breakwaters: A Shelter-Based Approach
by Almog Ben Natan, Natalie Chernihovsky and Nadav Shashar
Coasts 2025, 5(2), 18; https://doi.org/10.3390/coasts5020018 - 28 May 2025
Viewed by 506
Abstract
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically [...] Read more.
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically composed of hard units designed to block and divert wave and current energy, often fail to support diverse and abundant marine communities because of their impact on current and sediment transport, the introduction of invasive species, and the loss of natural habitats. Marine ecoengineering aims at increasing CDS ecological services and the development of marine organisms on them. In this study, carried out in a coral reef environment, we examined the relationship between coral colony protection levels and three factors related to their development, namely, coral fragment survival rate, larval settlement, and water motion (flow rate), across three distinct niches: Exposed, Semi-sheltered, and Sheltered. Coral survivability was assessed through fragment planting, while recruitment was monitored using ceramic settlement tiles. Water motion was measured in all defined niches using plaster of Paris Clod-Cards. Additionally, concrete barrier structures were placed in Exposed niches to test whether artificially added protective elements could enhance coral fragment survival. No differences were found in coral settlement between the niches. Flow rate patterns remained similar in Exposed and Sheltered niches due to vortex formation in the Sheltered zones. Survival analysis revealed variability between niches, with the addition of artificial shelter barriers leading to the highest coral fragment survival on the breakwater. This study contributes to the development of ways to enhance coral development with the goal of transforming artificial barriers into functional artificial reefs. Full article
Show Figures

Figure 1

35 pages, 21941 KiB  
Article
Explore the Ultra-High Density Urban Waterfront Space Form: An Investigation of Macau Peninsula Pier District via Point of Interest (POI) and Space Syntax
by Yue Huang, Yile Chen, Junxin Song, Liang Zheng, Shuai Yang, Yike Gao, Rongyao Li and Lu Huang
Buildings 2025, 15(10), 1735; https://doi.org/10.3390/buildings15101735 - 20 May 2025
Viewed by 741
Abstract
High-density cities have obvious characteristics of compact urban spatial form and intensive land use in terms of spatial environment, and have always been a topic of academic focus. As a typical coastal historical district, the Macau Peninsula pier district (mainly the Macau Inner [...] Read more.
High-density cities have obvious characteristics of compact urban spatial form and intensive land use in terms of spatial environment, and have always been a topic of academic focus. As a typical coastal historical district, the Macau Peninsula pier district (mainly the Macau Inner Harbour) has a high building density and a low average street width, forming a vertical coastline development model that directly converses with the ocean. This area is adjacent to Macau’s World Heritage Site and directly related to the Marine trade functions. The distribution pattern of cultural heritage linked by the ocean has strengthened Macau’s unique positioning as a node city on the Maritime Silk Road. This text is based on the theory of urban development, integrates spatial syntax and POI analysis techniques, and combines the theories of waterfront regeneration, high-density urban form and post-industrial urbanism to integrate and deepen the theoretical framework, and conduct a systematic study on the urban spatial characteristics of the coastal area of the Macau Peninsula. This study found that (1) Catering and shopping facilities present a dual agglomeration mechanism of “tourism-driven + commercial core”, with Avenida de Almeida Ribeiro as the main axis and radiating to the Ruins of St. Paul’s and Praça de Ponte e Horta, respectively. Historical blocks and tourist hotspots clearly guide the spatial center of gravity. (2) Residential and life service facilities are highly coupled, reflecting the spatial logic of “work-residence integration-service coordination”. The distribution of life service facilities basically overlaps with the high-density residential area, forming an obvious “living circle + community unit” structure with clear spatial boundaries. (3) Commercial and transportation facilities form a “functional axis belt” organizational structure along the main road, with the Rua das Lorchas—Rua do Almirante Sérgio axis as the skeleton, constructing a “functional transmission chain”. (4) The spatial system of the Macau Peninsula pier district has transformed from a single center to a multi-node, network-linked structure. Its internal spatial differentiation is not only constrained by traditional land use functions but is also driven by complex factors such as tourism economy, residential migration, historical protection, and infrastructure accessibility. (5) Through the analysis of space syntax, it is found that the core integration of the Macau Peninsula pier district is concentrated near Pier 16 and the northern area. The two main roads have good accessibility for motor vehicle travel, and the northern area of the Macau Peninsula pier district has good accessibility for long and short-distance walking. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

31 pages, 3647 KiB  
Article
The Impact of Information Consumption Pilot Policy on Urban Land Green Use Efficiency: An Empirical Study from China
by Yunpeng Fu, Zixuan Wang and Wenjia Zhao
Land 2025, 14(5), 945; https://doi.org/10.3390/land14050945 - 27 Apr 2025
Viewed by 491
Abstract
Information consumption has been reshaping the modes of human living and production, and driving the transformation of production and trade activities traditionally dependent on land resources, thus influencing urban land green use efficiency (ULGUE). Based on the panel data of 281 prefecture-level cities [...] Read more.
Information consumption has been reshaping the modes of human living and production, and driving the transformation of production and trade activities traditionally dependent on land resources, thus influencing urban land green use efficiency (ULGUE). Based on the panel data of 281 prefecture-level cities in China from 2011 to 2023, this study employs the national Information Consumption Pilot Policy (ICPP) as a quasi-natural experiment and utilizes a double machine learning model to assess the ICPP’s impacts on ULGUE. According to the results of the causal mediating effect analysis, the ICPP has improved ULGUE through three mediating mechanisms: expanding the scale of digital transactions, nurturing future industrial developments, and promoting green consumption behaviors. Moreover, in light of the results of the heterogeneity analysis, the ICPP’s impacts on ULGUE vary significantly. Such variation can primarily be attributed to differences in urban resource endowments, disparities in transportation infrastructure development, and variations in geographical location. Specifically, the ICPP has produced more prominent impacts on enhancing land green use efficiency in resource-based cities, cities with high-speed rail access, and coastal cities. Therefore, the government should proactively establish an urban information consumption environment, enhance the role of digital transactions, strategize future industrial developments, encourage green consumption behaviors, and differentiate local policies to effectively promote the continuous improvement of ULGUE. Full article
(This article belongs to the Special Issue Land Resource Use Efficiency and Sustainable Land Use)
Show Figures

Figure 1

31 pages, 24582 KiB  
Article
Towards Sustainable and Resilient Infrastructure: Hurricane-Induced Roadway Closure and Accessibility Assessment in Florida Using Machine Learning
by Samuel Takyi, Richard Boadu Antwi, Eren Erman Ozguven, Leslie Okine and Ren Moses
Sustainability 2025, 17(9), 3909; https://doi.org/10.3390/su17093909 - 26 Apr 2025
Viewed by 719
Abstract
Natural disasters like hurricanes can severely disrupt transportation systems, leading to roadway closures and limiting accessibility, which has extreme economic, social, and sustainability implications. This study investigates the impact of hurricanes Ian and Idalia on roadway accessibility in Florida using machine learning techniques. [...] Read more.
Natural disasters like hurricanes can severely disrupt transportation systems, leading to roadway closures and limiting accessibility, which has extreme economic, social, and sustainability implications. This study investigates the impact of hurricanes Ian and Idalia on roadway accessibility in Florida using machine learning techniques. High-resolution satellite imagery, combined with demographic and hurricane-related roadway data, was used to assess the extent of road closures in southeast Florida (Hurricane Ian) and northwest Florida (Hurricane Idalia). The model detected roadway segments as open, partially closed, or fully closed, achieving an overall accuracy of 89%, with confidence levels of 92% and 85% for the two hurricanes, respectively. The results showed that heavily populated coastal regions experienced the most significant disruptions, with more extensive closures and reduced accessibility. This research demonstrates how machine learning can enhance disaster recovery efforts by identifying critical infrastructure in need of immediate attention, supporting sustainable resilience in post-hurricane recovery. The findings suggest that integrating such methods into disaster planning can improve the efficiency and sustainability of recovery operations, helping to allocate resources more effectively in future disaster events. Full article
Show Figures

Figure 1

9 pages, 2763 KiB  
Proceeding Paper
A Sediment Supply Assessment in a Touristic Zone: A Case Study of West Cyprus
by Stamatia Papasarafianou, Giada Varra, Luca Cozzolino and Ourania Tzoraki
Environ. Earth Sci. Proc. 2025, 32(1), 16; https://doi.org/10.3390/eesp2025032016 - 23 Apr 2025
Viewed by 474
Abstract
Sediment transport plays a crucial role in shaping coastal and riverine environments, influencing both natural and human activities. This study assesses sediment supply from the entire basin of a touristic zone of Cyprus, where coastal erosion and sediment deposition impact infrastructure, tourism, and [...] Read more.
Sediment transport plays a crucial role in shaping coastal and riverine environments, influencing both natural and human activities. This study assesses sediment supply from the entire basin of a touristic zone of Cyprus, where coastal erosion and sediment deposition impact infrastructure, tourism, and environmental sustainability. Human activities, such as dam construction, further disrupt the sediment balance. This study focuses on Coral Bay and Potima Gulf, a popular tourist destination along an ~11 km shoreline in western Cyprus, fed by four small rivers draining a total area of 66.5 km2. The sustainability of the Coral Bay–Potima system is threatened by the Mavrokolympos stream dam, which traps upstream sediments. Using the USLE method, mean sediment yield at the basin outlet is estimated at 888 t km−2 yr−1. These findings underscore the link between watershed processes and sustainable coastal management, emphasizing the need for integrated sediment transport assessments in touristic coastal zones. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

28 pages, 14780 KiB  
Article
Longyearbyen Lagoon (Spitsbergen): Gravel Spits Movement Rate and Mechanisms
by Nataliya Marchenko and Aleksey Marchenko
Geographies 2025, 5(2), 18; https://doi.org/10.3390/geographies5020018 - 3 Apr 2025
Viewed by 750
Abstract
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and [...] Read more.
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and serving as a natural laboratory. The location’s well-developed infrastructure and accessible logistics make it an ideal testing site available at any time. It can be used for many natural scientific studies. The lagoon continually changes due to the primary action of waves and tides. This article focuses on gravel spit movement, accelerating in recent years to several meters monthly. Using methods of aerial and satellite images, laser scanning, and hydrodynamic measurements, we have delineated processes, rates, and mechanisms behind this movement. The measurements revealed an accelerating eastward movement of the lagoon spit, from 8 m in the first year to 86 m in the fourth year of observation. This can be explained by a combination of the reconstruction of the Longyearbyen riverbed and increased flow because of climate change. Notably, the expansion does not only occur in the summer months: from September 2022 to February 2023, the spit moved by 40 m, and then, by 19 m from February to June 2023. We found that the bed-load transport along the spit coupled with gravel slides are the primary drives of lagoon expansion and growth. We also investigated movements of groundwater in the spit and changes in gravel contents along the spit, influencing the water saturation of the gravel. Modelling these processes aids in forecasting lagoon system development, crucial for informed management and engineering decisions in Arctic coastal regions. Full article
Show Figures

Figure 1

19 pages, 3358 KiB  
Review
Towards a Digital Information Platform for Locating and Assessing Environmental Impacts of Submarine Groundwater Discharge: Examples from the Baltic Sea
by Klaus Hinsby, Jan Scholten, Joonas Virtasalo, Beata Szymczycha, Jørgen O. Leth, Lærke T. Andersen, Maria Ondracek, Jørgen Tulstrup, Michał Latacz and Rudolf Bannasch
J. Mar. Sci. Eng. 2025, 13(3), 614; https://doi.org/10.3390/jmse13030614 - 20 Mar 2025
Viewed by 1103
Abstract
The number of studies on submarine groundwater discharge (SGD) and the evidence of its significance in biogeochemical cycling and potential impacts on the chemical and ecological status of coastal waters is increasing globally. Here, we briefly present SGD studies from the Baltic Sea [...] Read more.
The number of studies on submarine groundwater discharge (SGD) and the evidence of its significance in biogeochemical cycling and potential impacts on the chemical and ecological status of coastal waters is increasing globally. Here, we briefly present SGD studies from the Baltic Sea identified along the coastlines of Denmark, Finland, Germany, Poland, Sweden and Russia in the southwestern, southern and north–northeastern parts of the Baltic Sea. We introduce a digital SGD map viewer and information platform enabling easy overview and access to information on identified SGD sites in the coastal areas of the Baltic Sea. SGDs potentially transport critical pollutants from urban and agricultural areas on land to the marine environment. The pollutants include nutrients, dissolved organic and inorganic carbon, metals, pharmaceuticals, and other emerging contaminants, potentially harming marine ecosystems and biodiversity and possibly contributing to the poor chemical or ecological status of coastal waters, affecting human and environmental health. We focus on case studies from Finland, Germany, Poland and Denmark that include the results and interpretations from the applied geochemical, geophysical and geological methods, as well as bionic autonomous underwater vehicles (AUVs) for locating, investigating, modelling and visualizing SGD sites in 2D and 3D. The potential Pan-European or even global SGD information platform established within the European Geological Data Infrastructure (EGDI) enables the easy combination and comparison of map layers such as seabed sediment types and coastal habitats. The EGDI map viewer provides easy access to information from SGD studies and may serve as an entry point to relevant information on SGDs, including contents of pollutants, for the scientific community and policy-makers. The information potentially includes the results of model simulations, data from near real-time sensors at permanently installed monitoring stations and surveys in time and space conducted by AUVs. The presented digital SGD information platform is particularly pertinent to the UN Sustainable Development Goal (SDG) No. 14, which focuses on the conservation and sustainable use of oceans and marine resources. Full article
Show Figures

Graphical abstract

22 pages, 8315 KiB  
Article
Ferry Electrification Energy Demand and Particle Swarm Optimization Charging Scheduling Model Parameters Analysis
by Tomislav Peša, Maja Krčum, Grgo Kero and Joško Šoda
Appl. Sci. 2025, 15(6), 3002; https://doi.org/10.3390/app15063002 - 10 Mar 2025
Cited by 1 | Viewed by 784
Abstract
Maritime transportation significantly contributes to air pollution, especially in coastal cities. Air pollution represents the greatest health risk related to the environment in the European Union. Therefore, the European Commission published the European Green Deal, which introduces the rule of zero-emission requirements for [...] Read more.
Maritime transportation significantly contributes to air pollution, especially in coastal cities. Air pollution represents the greatest health risk related to the environment in the European Union. Therefore, the European Commission published the European Green Deal, which introduces the rule of zero-emission requirements for ships at berths with the mandatory use of power supply from shore or alternative technologies without emissions. The electrification of ferries has proven to be a key approach in reducing the negative impact on the environment; hence, it is necessary to provide adequate infrastructure for charging electric ferries. To determine the energy needs of the shore connection, a daily energy profile of the ferry fleet was created. Due to the sailing schedule, daily energy needs may be non-periodic. By optimizing the charging process, a reduction in peak charging power can be achieved. The charging process was optimized using particle swarm optimization. To improve the function goal, the parameters of the model were analyzed and optimized. It was found that the correct selection of population size and inertia weight factor can significantly enhance the optimization effect. The proposed model can be applied to other ports of interest, considering the specifics of the exploitation of the fleet of ships. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

26 pages, 1336 KiB  
Article
Is China’s Urban Development Planning Sustainable? Evidence from the Transportation Sector in Cities Along the Belt and Road Initiative Route
by Tian Xia, Siyu Li, Yunning Ma and Yongrok Choi
Land 2025, 14(2), 363; https://doi.org/10.3390/land14020363 - 10 Feb 2025
Cited by 2 | Viewed by 808
Abstract
The Belt and Road Initiative (BRI) has been implemented for over a decade; however, research on its impact on China’s transport sector remains relatively scarce. It is imperative to investigate whether the BRI has greatly enhanced the growth of Green Total Factor Productivity [...] Read more.
The Belt and Road Initiative (BRI) has been implemented for over a decade; however, research on its impact on China’s transport sector remains relatively scarce. It is imperative to investigate whether the BRI has greatly enhanced the growth of Green Total Factor Productivity (GTFP) in the transport sector across provinces along its route because the logistics hub is crucial for sustainable land development of the local economy. To address this missing link, this study examined the GTFP of the transport sector in cities along the BRI by employing the global Luenberger nonradial directional distance function (GLNDDF). Subsequently, a Difference-in-Differences (DID) model was applied to evaluate the policy impact of the BRI on the regional GTFP of the transport sector. The key results of this study were as follows: (1) our empirical findings indicated that the BRI has a statistically significant, yet very weak governance of the GTFP of the transportation sector, with an average increase of 0.0265 units in total factor productivity, implying that the direction of the BRI seems right, but much stronger governance is needed for differentiated city planning; (2) the BRI has two wings in its implementation policies and regulatory and promotional policies. In this study, active environmental regulation may have a more substantial impact than promotional policies, implying that oversupply issues arising from financial promotions along the BRI routes should be avoided for city planning, even with its political importance. (3) There are notable regional variations, with the policy effect being relatively weak in the central region, implying that the grand industrial transition from the east coastal cities to the western region should be cautiously harmonized between market demand and infrastructure-oriented government-led policies. These findings provide valuable insights into urban environments, city planning, and urban–rural interactions, emphasizing the importance of land-related tradeoffs in resource management to foster sustainable governance in developing countries. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop