Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = coarse aggregate concrete printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 446
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

17 pages, 3806 KiB  
Article
Quantifying Recycled Construction and Demolition Waste for Use in 3D-Printed Concrete
by Wibke De Villiers, Mwiti Mwongo, Adewumi John Babafemi and Gideon Van Zijl
Recycling 2024, 9(4), 55; https://doi.org/10.3390/recycling9040055 - 28 Jun 2024
Cited by 3 | Viewed by 2792
Abstract
Despite extensive regulations, the systemic under-reporting of construction and demolition waste generation rates pervades the South African waste sector due to the extensive and active informal waste management practices that are typical of developing countries. This study merges the rapid development of high-technology [...] Read more.
Despite extensive regulations, the systemic under-reporting of construction and demolition waste generation rates pervades the South African waste sector due to the extensive and active informal waste management practices that are typical of developing countries. This study merges the rapid development of high-technology 3D-printed concrete (3DPC) with the increasing pressure that the built environment is placing on both natural resource consumption and landfill space due to construction and demolition waste (CDW) by establishing an inventory of CDW that is suitable for use in 3DPC in South Africa. This is an essential step in ensuring the technical, economic, and logistical viability of using CDW as aggregate or supplementary cementitious materials in 3DPC. Of the methods considered, the lifetime material analysis and per capita multiplier methods are the most appropriate for the context and available seed data; this results in CDW estimates of 24.3 Mt and 12.2 Mt per annum in South Africa, respectively. This range is due to the different points of estimation for the two methods considered, and the per capita multiplier method provides an inevitable underestimation. In order to contextualise the estimated availability of CDW material for use in concrete in general, the demand for coarse and fine aggregate and supplementary cementitious material in South Africa is quantified as 77.9 Mt. This overall annual demand far exceeds the estimated CDW material (12.2–24.3 Mt) available as an alternative material source for concrete. Full article
Show Figures

Figure 1

14 pages, 4466 KiB  
Article
Recycling 3D Printed Concrete Waste for Normal Strength Concrete Production
by Girum Mindaye Mengistu and Rita Nemes
Appl. Sci. 2024, 14(3), 1142; https://doi.org/10.3390/app14031142 - 29 Jan 2024
Cited by 8 | Viewed by 2542
Abstract
As the use of 3D-printed concrete becomes more prevalent, the need for effective recycling methods becomes paramount. This study addresses this concern by exploring the repurposing of 3D-printed concrete waste as an aggregate in normal-strength concrete for C30/37 and C40/50 classes, covering both [...] Read more.
As the use of 3D-printed concrete becomes more prevalent, the need for effective recycling methods becomes paramount. This study addresses this concern by exploring the repurposing of 3D-printed concrete waste as an aggregate in normal-strength concrete for C30/37 and C40/50 classes, covering both fine and coarse aggregates in its particle size distribution. The extent of recycled aggregate (RA) replacement was determined through sieve analysis. A two-stage investigation assessed the compressive strength performance of the concrete specimens. The initial stage produced reference specimens with no replacement, representing conventional concrete. In the second stage, variable specimens incorporated 50% and 67% recycled aggregate (RA) from 3D-printed concrete waste. Results revealed that in C40/50, both the 50% and 67% replacements consistently exhibited a higher strength than 0%. In C30/37, the 50% replacement displayed decreased strength compared to the 0% and 67%, while the 67% replacement consistently showed superior strength. Adjusting the water content impacted strength; at 67%, slight variations occurred, while at 50%, extra water led to a significant decrease. An overarching discovery is that the efficacy of the 67% replacement level holds regardless of the concrete strength class. Full article
Show Figures

Figure 1

32 pages, 8286 KiB  
Article
Machine Learning-Based Predictive Model for Tensile and Flexural Strength of 3D-Printed Concrete
by Ammar Ali, Raja Dilawar Riaz, Umair Jalil Malik, Syed Baqar Abbas, Muhammad Usman, Mati Ullah Shah, In-Ho Kim, Asad Hanif and Muhammad Faizan
Materials 2023, 16(11), 4149; https://doi.org/10.3390/ma16114149 - 2 Jun 2023
Cited by 41 | Viewed by 5968
Abstract
The additive manufacturing of concrete, also known as 3D-printed concrete, is produced layer by layer using a 3D printer. The three-dimensional printing of concrete offers several benefits compared to conventional concrete construction, such as reduced labor costs and wastage of materials. It can [...] Read more.
The additive manufacturing of concrete, also known as 3D-printed concrete, is produced layer by layer using a 3D printer. The three-dimensional printing of concrete offers several benefits compared to conventional concrete construction, such as reduced labor costs and wastage of materials. It can also be used to build complex structures with high precision and accuracy. However, optimizing the mix design of 3D-printed concrete is challenging, involving numerous factors and extensive hit-and-trail experimentation. This study addresses this issue by developing predictive models, such as the Gaussian Process Regression model, Decision Tree Regression model, Support Vector Machine model, and XGBoost Regression models. The input parameters were water (Kg/m3), cement (Kg/m3), silica fume (Kg/m3), fly ash (Kg/m3), coarse aggregate (Kg/m3 & mm for diameter), fine aggregate (Kg/m3 & mm for diameter), viscosity modifying agent (Kg/m3), fibers (Kg/m3), fiber properties (mm for diameter and MPa for strength), print speed (mm/sec), and nozzle area (mm2), while target properties were the flexural and tensile strength of concrete (MPa data from 25 literature studies were collected. The water/binder ratio used in the dataset ranged from 0.27 to 0.67. Different types of sands and fibers have been used, with fibers having a maximum length of 23 mm. Based upon the Coefficient of Determination (R2), Root Mean Square Error (RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE) for casted and printed concrete, the SVM model performed better than other models. All models’ cast and printed flexural strength values were also correlated. The model’s performance has also been checked on six different mix proportions from the dataset to show its accuracy. It is worth noting that the lack of ML-based predictive models for the flexural and tensile properties of 3D-printed concrete in the literature makes this study a novel innovation in the field. This model could reduce the computational and experimental effort required to formulate the mixed design of printed concrete. Full article
(This article belongs to the Special Issue Design and Properties of 3D Printing Concrete)
Show Figures

Graphical abstract

17 pages, 7707 KiB  
Article
DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 mm
by Arnošt Vespalec, Jan Podroužek and Daniel Koutný
Materials 2023, 16(9), 3418; https://doi.org/10.3390/ma16093418 - 27 Apr 2023
Cited by 3 | Viewed by 2302
Abstract
This paper is primarily concerned with determining and assessing the properties of a cement-based composite material containing large particles of aggregate in digital manufacturing. The motivation is that mixtures with larger aggregate sizes offer benefits such as increased resistance to cracking, savings in [...] Read more.
This paper is primarily concerned with determining and assessing the properties of a cement-based composite material containing large particles of aggregate in digital manufacturing. The motivation is that mixtures with larger aggregate sizes offer benefits such as increased resistance to cracking, savings in other material components (such as Portland cement), and ultimately cost savings. Consequently, in the context of 3D Construction/Concrete Print technology (3DCP), these materials are environmentally friendly, unlike the fine-grained mixtures previously utilized. Prior to printing, these limits must be established within the virtual environment’s process parameters in order to reduce the amount of waste produced. This study extends the existing research in the field of large-scale 3DCP by employing coarse aggregate (crushed coarse river stone) with a maximum particle size of 8 mm. The research focuses on inverse material characterization, with the primary goal of determining the optimal combination of three monitored process parameters—print speed, extrusion height, and extrusion width—that will maximize buildability. Design Of Experiment was used to cover all possible variations and reduce the number of required simulations. In particular, the Box—Behnken method was used for three factors and a central point. As a result, thirteen combinations of process parameters covering the area of interest were determined. Thirteen numerical simulations were conducted using the Abaqus software, and the outcomes were discussed. Full article
Show Figures

Figure 1

20 pages, 2696 KiB  
Article
Mechanical and Durability Properties of CCD-Optimised Fibre-Reinforced Self-Compacting Concrete
by Gunachandrabose Sivanandam and Sreevidya Venkataraman
Processes 2023, 11(2), 455; https://doi.org/10.3390/pr11020455 - 2 Feb 2023
Cited by 3 | Viewed by 1979
Abstract
The accelerated advancement of industrialization, urbanization, and technology produces an enormous amount of waste materials that are channelled into the environment, contaminating the soil, water and air. This exceedingly large volume of waste in the planet’s environment has made it challenging and difficult [...] Read more.
The accelerated advancement of industrialization, urbanization, and technology produces an enormous amount of waste materials that are channelled into the environment, contaminating the soil, water and air. This exceedingly large volume of waste in the planet’s environment has made it challenging and difficult to handle; thus, it is urgent to facilitate alternative methods of waste disposal. Moreover, the consumption of concrete raw materials increases as a consequence of a sudden increase in concrete usage. In this study, printed circuit boards (PCB), cutting waste (e-waste) (0%, 5%, 10%, 15%, 20%) and recycled concrete aggregate (construction and demolition waste) (0%, 20%, 40%, 60%, 80%, 100%) replace the fine and coarse aggregate; this is utilised in the making of self-compacting concrete (SCC). To mitigate the impact of shrinkage and micro-cracks produced during loading, synthetic fibres (polypropylene fibres) (0%, 0.25%, 0.5%, 0.75%, 1%) are incorporated into the dense matrix of concrete. Based on the experiments conducted, it is concluded that the optimum percentages of e-waste, recycled aggregate and synthetic fibres are 10%, 60% and 0.5%, respectively. It is proposed to use response surface methodology for the statistical modelling of fibre-reinforced self-compacting concrete (FRSCC) ingredients, which will diminish the number of experiments conducted during optimisation. Experimental optimisation of ingredients was carried out by determining the workability properties (slump flow, L-Box, V-Funnel and Sieve test), strength properties (compressive, split tensile, flexural at 7, 14, 28 days of curing) and durability properties against chemical exposure (sulphuric and hydrochloric acid attack, sulphate attack at 29 and 90 days of immersion). In the statistical optimisation process, the central composite design (CCD) is utilised, and it is concluded that the optimum percentages of e-waste, recycled aggregate and synthetic fibres are 9.90%, 51.35% and 0.503%, respectively, as these produce a compressive strength (CS) of 47.02 MPa at the end of the 28th day of curing, whereas FRSCC created with experimentally optimised ingredients shows a strength of 46.79 MPa with the use of 60% of recycled aggregate, 10% of e-waste and 0.5% polypropylene fibre. Hence, it is observed that the CCD-optimised ingredients were the optimum dosage of ingredients based on the compressive strength values at 28 days. It is concluded that the FRSCC specimens created with CCD-optimised parameters show better resistance against loading and chemical exposure, as these show minimum weight and strength loss when compared to FRSCC with experimentally optimised parameters. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

26 pages, 4348 KiB  
Review
Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer: A Review
by Anastasia Puzatova, Pshtiwan Shakor, Vittoria Laghi and Maria Dmitrieva
Buildings 2022, 12(11), 2023; https://doi.org/10.3390/buildings12112023 - 18 Nov 2022
Cited by 62 | Viewed by 19020
Abstract
Additive manufacturing technologies are becoming more popular in various industries, including the construction industry. Currently, construction 3D printing is sufficiently well studied from an academic point of view, leading towards the transition from experimental to mass large-scale construction. Most questions arise about the [...] Read more.
Additive manufacturing technologies are becoming more popular in various industries, including the construction industry. Currently, construction 3D printing is sufficiently well studied from an academic point of view, leading towards the transition from experimental to mass large-scale construction. Most questions arise about the applicability of construction 3D printers for printing entire buildings and structures. This paper provides an overview of the different types of construction 3D printing technologies currently in use, and their fundamental differences, as well as some significant data on the advantages of using these advanced technologies in construction. A description of the requirements for composite printing is also provided, with possible issues that may arise when switching from lab-scale construction printing to mass large-scale printing. All printers using additive manufacturing technologies for construction are divided into three types: robotic arm printers, portal-type printers, and gantry 3D printers. It is noted that gantry printers are more suitable for large-scale printing since some of their configurations have the ability to construct buildings that are practically unlimited in size. In addition, all printers are not capable of printing with concrete containing a coarse aggregate, which is a necessary requirement in terms of the strength and economic feasibility of 3D printing material for large-scale applications. Full article
Show Figures

Figure 1

23 pages, 13622 KiB  
Article
The Effect of Water, Nanoparticulate Silica and Dry Water on the Flow Properties of Cohesionless Sand
by Leigh Duncan Hamilton, Harald Zetzener and Arno Kwade
Processes 2022, 10(11), 2438; https://doi.org/10.3390/pr10112438 - 17 Nov 2022
Cited by 8 | Viewed by 2413
Abstract
Cement hydration within particle bed concrete 3D printing processes can be benefited by storing water in the otherwise dry aggregate bulk material. Additional water also has the advantage of acting as a source of passive cooling. However, even small amounts of liquid lead [...] Read more.
Cement hydration within particle bed concrete 3D printing processes can be benefited by storing water in the otherwise dry aggregate bulk material. Additional water also has the advantage of acting as a source of passive cooling. However, even small amounts of liquid lead to detrimental effects on bulk properties, such as the flowability. For that reason, this study proposes implementing dry water (DW) in order to store large amounts of water in a bulk material of non-absorbent, coarse sand whilst maintaining its initial bulk properties. DW is essentially created by mixing water and hydrophobic fumed silica in a high shear process, leading to water droplets surrounded by a protective silica shell. Herein, several DW variants, distinguished by their deionised water to hydrophobic silica ratio, were mixed with non-absorbent, coarse sand particles. In addition, mixtures were produced to contain a specific overall water content of up to wH2O = 5% within the bulk material. It was shown that dry water can be used to incorporate large amounts of water into a granular bulk material and simultaneously preserve flow properties. The decisive factor is the proportion of hydrophobic silica for a given water content as the DW capsules may otherwise not endure mechanical stress during mixing. However, even minimal quantities of silica can prevent liquid capillary bridges from forming and, thus, inhibit bulk property degradation. Full article
Show Figures

Graphical abstract

22 pages, 6074 KiB  
Article
Large Particle 3D Concrete Printing—A Green and Viable Solution
by Inka Mai, Leon Brohmann, Niklas Freund, Stefan Gantner, Harald Kloft, Dirk Lowke and Norman Hack
Materials 2021, 14(20), 6125; https://doi.org/10.3390/ma14206125 - 15 Oct 2021
Cited by 21 | Viewed by 5178
Abstract
The Large Particle 3D Concrete Printing (LP3DCP) process presented in this paper is based on the particle bed 3D printing method; here, the integration of significantly larger particles (up to 36 mm) for selective binding using the shotcrete technique is presented. In the [...] Read more.
The Large Particle 3D Concrete Printing (LP3DCP) process presented in this paper is based on the particle bed 3D printing method; here, the integration of significantly larger particles (up to 36 mm) for selective binding using the shotcrete technique is presented. In the LP3DCP process, the integration of large particles, i.e., naturally coarse, crushed or recycled aggregates, reduces the cement volume fraction by more than 50% compared to structures conventionally printed with mortar. Hence, with LP3DCP, the global warming potential, the acidification potential and the total non-renewable primary energy of 3D printed structures can be reduced by approximately 30%. Additionally, the increased proportion of aggregates enables higher compressive strengths than without the coarse aggregates, ranging up to 65 MPa. This article presents fundamental material investigations on particle packing and matrix penetration as well as compressive strength tests and geometry studies. The results of this systematic investigation are presented, and the best set is applied to produce a large-scale demonstrator of one cubic meter of size and complex geometry. Moreover, the demonstrator features reinforcement and subtractive surface processing strategies. Further improvements of the LP3DCP technology as well as construction applications and architectural design potentials are discussed thereafter. Full article
Show Figures

Figure 1

19 pages, 6850 KiB  
Article
Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing
by Arnošt Vespalec, Josef Novák, Alena Kohoutková, Petr Vosynek, Jan Podroužek, David Škaroupka, Tomáš Zikmund, Josef Kaiser and David Paloušek
Materials 2020, 13(22), 5147; https://doi.org/10.3390/ma13225147 - 15 Nov 2020
Cited by 21 | Viewed by 4452
Abstract
3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is [...] Read more.
3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed to vary in relation to the time of concrete casting. The proposed experimental study investigated the behavior of a hardened concrete mixture containing coarse aggregates that were up to 8 mm in size, which is rather unusual for 3DCP technology. The resulting direct tensile strength at the layer interface was investigated for various time intervals of deposition from the initial mixing of concrete components. To better understand the material behavior at the layer interface area, computed tomography (CT) scanning was conducted, where the volumetric and area analysis enabled validation of the pore size and count distribution in accordance with the layer deposition process. The analyzed CT data related the macroscopic anisotropy and the resulting crack pattern to the temporal and spatial variability that is inherent to the additive manufacturing process at construction scales while providing additional insights into the porosity formation during the extrusion of the cementitious composite. The observed results contribute to previous investigations in this field by demonstrating the causal relationships, namely, how the interface strength development is determined by time, deposition process, and pore size distribution. Moreover, in regard to the printability of the proposed coarse aggregate mixture, the specific time interval is presented and its interplay with interface roughness and porosity is discussed. Full article
(This article belongs to the Special Issue Concrete 3D Printing and Digitally-Aided Fabrication)
Show Figures

Figure 1

16 pages, 5912 KiB  
Article
Preliminary Mechanical Analysis of Rubber-Cement Composites Suitable for Additive Process Construction
by Matteo Sambucci, Danilo Marini, Abbas Sibai and Marco Valente
J. Compos. Sci. 2020, 4(3), 120; https://doi.org/10.3390/jcs4030120 - 18 Aug 2020
Cited by 31 | Viewed by 4408
Abstract
Additive manufacturing for cementitious materials represents the most attractive frontier in the modern context of Construction 4.0. In addition to the technological progress of printing systems, the development of functional and low environmental impact printable mixtures is one of the current challenges of [...] Read more.
Additive manufacturing for cementitious materials represents the most attractive frontier in the modern context of Construction 4.0. In addition to the technological progress of printing systems, the development of functional and low environmental impact printable mixtures is one of the current challenges of digital fabrication in building and architectural fields. This paper proposes a preliminary physical-mechanical analysis on environmentally friendly mortars, compatible with the extrusion-based printing process, made up of recycling rubber aggregates deriving from end-of-life tires. In this study, two groups of rubber particle samples (0–1 mm rubber powder and 2–4 mm rubber granules) were used to partially/totally replace the mineral fraction of the reference printable mixture. Four tire rubber powder-granules proportions were investigated and control mortar (100% sand) was also prepared to compare its properties with those of the rubber-cement samples in terms of printability properties, mechanical strength, ductility, and structural isotropy. Based on the experimental results, the rubber aggregates increase the mixture fluidity, promoting better inter-layer adhesion than the neat mix. This leads to greater mechanical isotropy. As already investigated in other research works on Rubber-Concrete technology, the addition of rubber particles increases the ductility of the material but reduces its mechanical strength. However, by correctly balancing the fine and coarse rubber fraction, promising physical-mechanical performances were demonstrated. Full article
(This article belongs to the Special Issue Progress in Rubber Blends and Composites Technology)
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
A 3D Printed Ready-Mixed Concrete Power Distribution Substation: Materials and Construction Technology
by Guangchao Ji, Tao Ding, Jianzhuang Xiao, Shupeng Du, Jun Li and Zhenhua Duan
Materials 2019, 12(9), 1540; https://doi.org/10.3390/ma12091540 - 10 May 2019
Cited by 102 | Viewed by 8923
Abstract
Currently, 3D concrete printing technology is not yet able to print ready-mixed concrete with coarse aggregates. Based on an independently developed 3D printing construction equipment system and optimized concrete materials, a 3D concrete printer that can directly print ready-mixed concrete is developed. This [...] Read more.
Currently, 3D concrete printing technology is not yet able to print ready-mixed concrete with coarse aggregates. Based on an independently developed 3D printing construction equipment system and optimized concrete materials, a 3D concrete printer that can directly print ready-mixed concrete is developed. This paper introduces the whole 3D printing process for one power distribution substation in detail, including the printing equipment, key software, concrete preparation, printing process, and construction inspection. This investigation will provide valuable design and construction experience for the future construction of 3D concrete printing. Full article
Show Figures

Figure 1

Back to TopTop