Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = coalification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 270
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

23 pages, 3609 KiB  
Article
Structural Characterization of Low-Rank Coals in the Ningdong Coalfield Under the Control of the First Coalification Jump
by Xiaoyan Ji, Caifang Wu, Bin Gao, Xuezhong Lu, Bei Wang, Yongping Liang, Xiaowu Zhang and Zhifeng Zhang
Processes 2025, 13(7), 1996; https://doi.org/10.3390/pr13071996 - 24 Jun 2025
Viewed by 317
Abstract
The first coalification jump (FCJ) has a significant effect on changes in the microstructural properties of coal and plays a crucial role in understanding the efficient utilization of low-rank coal. One lignite (QSY-2), two subbituminous (MHJ-10 and YCW-2), and three high-volatile A-grade bituminous [...] Read more.
The first coalification jump (FCJ) has a significant effect on changes in the microstructural properties of coal and plays a crucial role in understanding the efficient utilization of low-rank coal. One lignite (QSY-2), two subbituminous (MHJ-10 and YCW-2), and three high-volatile A-grade bituminous coals (YX-12, JF-18, and HY-5) from the Ningdong coalfield were selected for research, avoiding the influence of regional geology. The evolution characteristics of the microstructures before and after the FCJ were investigated via spectroscopic experiments. The complex and unstable molecular structure of low-rank coal gradually decomposes and polymerizes at 350 °C. The aliphatic structure shows a V-shaped change trend as metamorphism increases. The inflection point is around an Ro of 0.6%. Demethylation and polymerization occur simultaneously during the FCJ. The reconnection of benzene substances with the aromatic ring increases the density of aromatic rings in the YCW-2 sample, significantly enhancing its aromaticity. The removal of oxygen-containing functional groups, especially methoxy and carbonyl groups, provides the possibility for the formation of CH4 and CO2 during the metamorphosis of lignite to subbituminous coal. Furthermore, high temperatures result in a loss of moisture content during the FCJ, which is the primary factor leading to a reduction in the hydroxyl content in coal. The selected samples are primarily composed of organic matter, with low levels of heteroatoms in the coal. It is preliminarily determined that coalification is not significantly affected. This study provides a theoretical foundation for investigating the molecular structure evolution of low-rank coal during the FCJ. Full article
Show Figures

Figure 1

16 pages, 1024 KiB  
Article
Substrate Composition Effects on the Microbial Enhancement of Biogenic Methane Production from Coal
by Liu Zhu, Wangjie Diao, Chenyao Gong, Haihan Wang, Peilin Zhu and Yi Liu
Sustainability 2025, 17(11), 4953; https://doi.org/10.3390/su17114953 - 28 May 2025
Viewed by 384
Abstract
The conversion of coal to biomethane is an environmentally friendly and sustainable method of coal utilization, and algae is a nutrient additive that enhances the economic sustainability of coal-to-biomethane production. The key regulatory factors and interaction mechanism of methane production were studied by [...] Read more.
The conversion of coal to biomethane is an environmentally friendly and sustainable method of coal utilization, and algae is a nutrient additive that enhances the economic sustainability of coal-to-biomethane production. The key regulatory factors and interaction mechanism of methane production were studied by carrying out anaerobic fermentation experiments on coal and microorganisms. Spearman correlation analysis, multiple linear regression, random forest and principal component analysis (PCA) were used to evaluate the effects of 14 coal-quality and microorganism composition parameters on methane production. The results showed that the hemicellulose content of microorganisms was significantly positively correlated with methane production, while total sugar and total fat significantly reduced the gas production. The protein content of microorganisms in a reasonable range could promote methane production. Among the coal-quality parameters, the C/H ratio (β = 0.43) and dry volatile matter (β = 0.17) had a weak positive contribution to methane production, while a high carbonization degree (C% > 80%; vitrinite reflectance > 1.2%) significantly inhibited the fermentation activity. The higher the maturity of the coal, the lower the methane production. The optimal methanogenic performance was concentrated in the combination of a low degree of coalification in coal (PC1 < −1.5) and high hemicellulose in microorganisms (PC2 > 1.8). In this study, a process optimization strategy was put forward, and the combination of low-rank coal with vitrinite reflectance < 0.5%, volatile matter > 35%, microorganisms with hemicellulose > 4.5%, and total sugar < 20% was optimized in an anaerobic fermentation experiment of coal and microorganisms. The results provide theoretical support for the directional control of anaerobic digestion of coal enhanced by microorganisms. Full article
Show Figures

Graphical abstract

22 pages, 4845 KiB  
Article
Multifractal Characterization of Pore Structure of Coals Using Gas Adsorption Experiment and Mercury Intrusion Porosimetry (MIP)
by Shuaidong Wang, Fengyin Chen, Shenghui Yue, Jing Hu, Hongrui Ding and Anhuai Lu
Fractal Fract. 2025, 9(3), 183; https://doi.org/10.3390/fractalfract9030183 - 16 Mar 2025
Cited by 1 | Viewed by 548
Abstract
Efficient and safe extraction of coalbed methane is essential for reshaping China’s energy composition. This study integrates CO2 adsorption, N2 adsorption, and corrected mercury intrusion porosimetry (MIP) data to analyze the full pore size distribution (PSD) of six coal samples from [...] Read more.
Efficient and safe extraction of coalbed methane is essential for reshaping China’s energy composition. This study integrates CO2 adsorption, N2 adsorption, and corrected mercury intrusion porosimetry (MIP) data to analyze the full pore size distribution (PSD) of six coal samples from the Qinshui and Tiefa Basins. By applying multifractal theory, we identified key heterogeneity features across different coal ranks, followed by a discussion of the factors influencing these parameters. The results indicate the following: (1) Coal matrix compressibility significantly impacts MIP results when mercury intrusion pressure exceeds 10 MPa, with corrected mesopore and macropore volume reductions ranging from 59.85–96.31% and 3.11–15.53%, respectively. (2) Pore volume distribution varies with coal rank, as macropores dominate in low-rank coal, while micropores contribute most in medium- and high-rank coal, accounting for over 90% of the total specific surface area. Multifractal analysis of CO2, N2, and corrected MIP data confirms notable multifractal characteristics across the full pore size range. (3) As the degree of coalification increases, as indicated by the rise in the Ro,max value, there is a notable negative correlation observed among the multifractal parameters Dmin-D0, D0-Dmax, Δα, and H. A positive correlation exists between moisture content and volatile matter content with Dmin-D0, Δα, and H, while a significant negative correlation is shown between the concentration of minerals and Dmin-D0, Δα, and H. There exists a favorable correlation between inertinite concentration and D0-Dmax. This work presents a theoretical foundation and empirical proof for the secure and effective extraction of coalbed methane in the researched region. Full article
Show Figures

Figure 1

19 pages, 13686 KiB  
Article
Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains
by Kevin R. McKenzie, Nathan A. Banek and Michael J. Wagner
Materials 2025, 18(5), 1022; https://doi.org/10.3390/ma18051022 - 26 Feb 2025
Viewed by 722
Abstract
The conversion of biochar, the low value byproduct of pyrolysis bio-oil production from biomass multi-walled carbon nanotubes (MWCNTs) and carbon nanochains (CNCs), is reported. It is shown that biomass can be converted to long (>30 µm) carbon nanotubes with an anomalously deep (>280 [...] Read more.
The conversion of biochar, the low value byproduct of pyrolysis bio-oil production from biomass multi-walled carbon nanotubes (MWCNTs) and carbon nanochains (CNCs), is reported. It is shown that biomass can be converted to long (>30 µm) carbon nanotubes with an anomalously deep (>280 nm) stacked-cup structure. A mechanism of the transformation that is consistent with previously reported graphitization of biochar, a “non-graphitizable” carbon, is proposed, suggesting the molten metal catalyst is absorbed into the biochar by capillary action, forming graphene walls as it percolates through pore structure. Graphite is formed when the diameter of the molten catalyst droplets is large (microns), while smaller droplets (submicron) form MWCNTs and still smaller (<100 nm) form CNCs. Branching in the biochar pore structure leads to subdivision of the catalyst droplets resulting in the progression from MWCNT to CNC formation. Very long MWCNTs (>50 µm) can be formed in the absence of CNCs by transforming lignite char rather than biochar, presumably due to the elimination of smaller branching pores during coalification. CNCs, in the absence of MWCNTs, can be formed in biochar by using low concentrations of catalyst nanoparticles formed by carbon thermal reduction of a metal salt during charring. The results presented suggest that developing methods to control the porosity of the char could yield the ability to rationally synthesize carbon nanotubes with control of length, breadth and wall thickness. Full article
Show Figures

Figure 1

20 pages, 4321 KiB  
Article
Transforming Biomass Waste into Hydrochars and Porous Activated Carbon: A Characterization Study
by Suhas, Monika Chaudhary, Shubham Chaudhary, Shivangi Chaubey, Isabel Pestana da Paixão Cansado, Mohammad Hadi Dehghani, Inderjeet Tyagi and Rama Gaur
Resources 2025, 14(3), 34; https://doi.org/10.3390/resources14030034 - 20 Feb 2025
Cited by 1 | Viewed by 1320
Abstract
Hydrothermal carbonization (HTC) is an environmentally friendly process for transforming biomass into sustainable hydrochar, which is a carbon-rich material with a variety of potential applications. Herein, Tectona grandis seeds (TGs) were transformed into hydrochars using HTC at low temperatures (180–250 °C) and autogenous [...] Read more.
Hydrothermal carbonization (HTC) is an environmentally friendly process for transforming biomass into sustainable hydrochar, which is a carbon-rich material with a variety of potential applications. Herein, Tectona grandis seeds (TGs) were transformed into hydrochars using HTC at low temperatures (180–250 °C) and autogenous pressure. The prepared hydrochars were rich in oxygenated functional groups. The optimized hydrochar, HC-230-4 (prepared at 230 °C, for 4 h), presented a ratio of H/C = 0.95 and O/C = 0.29, an improved degree of coalification, and a high heating value (26.53 MJ kg−1), which can replace bituminous coals in the power sector. The prepared hydrochar was further activated in the presence of CO2 to prepare activated carbon (AC). XRD, TGA, FTIR, FE-SEM, and BET techniques were used to characterize raw biomass (TGs), hydrochar, and ACs, to identify the potential applications for the developed materials. BET studies revealed that the hydrochar has limited porosity, with a low surface area (14.41 m2g−1) and porous volume. On the other hand, the derived AC (AC-850-5) has a high surface area (729.70 m2g−1) and appreciable total and microporous volumes (0.392 cm3g−1 and 0.286 cm3g−1). The use of biomass, mainly waste biomass, for the production of carbon-rich materials is an effective strategy for managing and valorizing waste biomass resources, reducing environmental pollution, and improving sustainability, being in line with the principles of circularity. Full article
Show Figures

Figure 1

25 pages, 18430 KiB  
Article
Pore Structure and Heterogeneity Characteristics of Deep Coal Reservoirs: A Case Study of the Daning–Jixian Block on the Southeastern Margin of the Ordos Basin
by Bo Li, Yanqin Guo, Xiao Hu, Tao Wang, Rong Wang, Xiaoming Chen, Wentian Fan and Ze Deng
Minerals 2025, 15(2), 116; https://doi.org/10.3390/min15020116 - 24 Jan 2025
Cited by 2 | Viewed by 810
Abstract
To clarify the micropore structure and fractal characteristics of the Danning–Jixian block on the eastern margin of the Ordos Basin, this study focuses on the deep coal rock of the Benxi Formation in that area. On the basis of an analysis of coal [...] Read more.
To clarify the micropore structure and fractal characteristics of the Danning–Jixian block on the eastern margin of the Ordos Basin, this study focuses on the deep coal rock of the Benxi Formation in that area. On the basis of an analysis of coal quality and physical properties, qualitative and quantitative studies of pore structures with different pore diameters were conducted via techniques such as field emission scanning electron microscopy (FE-SEM), low-pressure CO2 adsorption (LP-CO2A), low-temperature N2 adsorption (LT-N2A), and high-pressure mercury intrusion (HPMI). By applying fractal theory and integrating the results from the LP-CO2A, LT-N2A, and HPMI experiments, the fractal dimensions of pores with different diameters were obtained to characterize the complexity and heterogeneity of the pore structures of the coal samples. The results indicate that the deep coal reservoirs in the Danning–Jixian block have abundant nanometer-scale organic matter gas pores, tissue pores, and a small number of intergranular pores, showing strong heterogeneity influenced by the microscopic components and forms of distribution of organic matter. The pore structure of the Benxi Formation exhibits significant cross-scale effects and strong heterogeneity and is predominantly composed of micropores that account for more than 90% of the total pore volume; the pore structure is affected mainly by the degree of coalification, the vitrinite group, and the ash yield. Fractal analysis reveals that the heterogeneity of macropores is greater than that of mesopores and micropores. This may be attributed to the smaller pore sizes and concentrated distributions of micropores, which are less influenced by diagenesis, resulting in simpler pore structures with lower fractal dimensions. In contrast, mesopores and macropores, with larger diameters and broader distributions, exhibit diverse origins and are more affected by diagenesis, reflecting strong heterogeneity. The abundant storage space and strong self-similarity of micropores in deep coal facilitate the occurrence, flow, and extraction of deep coalbed methane. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

12 pages, 2154 KiB  
Article
Fractal Strategy for Improving Characterization of N2 Adsorption–Desorption in Mesopores
by Kunpeng Feng, Gaofeng Liu, Zhen Zhang, Huan Liu, Runsheng Lv, Xiaoming Wang, Ping Chang, Jia Lin and George Barakos
Fractal Fract. 2024, 8(11), 617; https://doi.org/10.3390/fractalfract8110617 - 23 Oct 2024
Cited by 5 | Viewed by 1783
Abstract
The current studies primarily analyze the heterogeneity and complexity of mesopore structures based on low-temperature nitrogen (N2) adsorption curves and the Frenkel–Halsey–Hill (FHH) fractal model. However, these studies ignore the fact that the low-temperature N2 desorption curve can also reflect [...] Read more.
The current studies primarily analyze the heterogeneity and complexity of mesopore structures based on low-temperature nitrogen (N2) adsorption curves and the Frenkel–Halsey–Hill (FHH) fractal model. However, these studies ignore the fact that the low-temperature N2 desorption curve can also reflect the desorption performance of the mesopore structure. In this research, novel fractal indicators for characterizing the adsorption–desorption performance of mesopores based on the fractal dimension from the N2 adsorption curves and N2 desorption curves are proposed. The novel fractal indicators I1 and I2 are applied to evaluate the adsorption–desorption performance of mesopores with pore size 2–5 nm and pore size 5–50 nm, respectively. The fractal indicator I1 shows an increasing trend with coalification, reflecting that the gas adsorption performance of 2–5 nm mesopores is enhanced with coalification. The fractal indicator I2 exhibits a trend of first increasing and then decreasing with coalification, indicating the gas desorption performance of mesopores with pore size 5–50 nm decreases first and then increases. The proposed indicators provide novel analytical parameters for further understanding the gas adsorption–desorption mechanism of porous coal-based or carbon-based materials. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Rock Engineering)
Show Figures

Figure 1

16 pages, 3102 KiB  
Article
Mineralogical and Geochemical Composition of Late Permian Coals from Dengfeng Coalfield, North China: Conversion of Clay Minerals in Coal during Coalification
by Shuyuan Ning, Zhenzhi Wang, Hui Wang, Chunxiang Chen, Hui Zhao, Bo Huang and Qiming Zheng
Processes 2024, 12(8), 1688; https://doi.org/10.3390/pr12081688 - 13 Aug 2024
Viewed by 1194
Abstract
Dengfeng Coalfield represents a significant coalfield in Henan Province, North China. It is therefore essential to gain an understanding of the mineralogy and geochemistry of the Dengfeng coal, both from a geochemical perspective and in terms of the wider environmental context. In this [...] Read more.
Dengfeng Coalfield represents a significant coalfield in Henan Province, North China. It is therefore essential to gain an understanding of the mineralogy and geochemistry of the Dengfeng coal, both from a geochemical perspective and in terms of the wider environmental context. In this study, a total of 27 coal bench samples were collected from the No. II1 coal of the Dengfeng Coalfield. The mineral species and major elements were quantitatively analysed using the X-ray diffraction and X-ray fluorescence methods, respectively. The minerals in the Dengfeng coal are dominated by ammonian illite and kaolinite with average contents of 3.73% and 7.47%, respectively. These are followed by calcite (2.74% on average) and ankerite (0.49%). The mean value of the kaolinite Hinkley index, which is a quantitative measure of kaolinite crystallinity, is 1.26. This suggests that kaolinite formation is primarily driven by diagenetic recrystallisation. The ammonian illite exhibits an average d001 of 10.2995 Å, indicative of a prevalence of NH4+ interlayer cations, with K+ also present in notable quantities. The ratio of NH4⁺ to (NH4⁺ + K⁺) has an average value of 0.90, which is indicative of the predominance of NH4⁺. The mean value of the illite Kübler index, which is a quantitative measure of illite crystallinity, is 0.264. This suggests that the diagenetic conditions correspond to the rank of the Dengfeng coal. The kaolinite present in the Dengfeng coal is suggested to have been derived from terrigenous detritus and subsequently subjected to diagenetic recrystallisation, resulting in a relatively high Hinkley index. The ammonian illite in the Dengfeng coal was predominantly formed through the conversion of the precursor kaolinite, with the influence of seawater during peat accumulation favouring the conversion of kaolinite to ammonian illite. Full article
(This article belongs to the Special Issue Exploration, Exploitation and Utilization of Coal and Gas Resources)
Show Figures

Figure 1

13 pages, 2756 KiB  
Article
Low-Temperature Thermal Treatment and Boron Speciation Analysis from Coals
by Jonah Gamutan, Shunsuke Kashiwakura, Richard Alorro and Tetsuya Nagasaka
Sustainability 2024, 16(13), 5770; https://doi.org/10.3390/su16135770 - 6 Jul 2024
Viewed by 1363
Abstract
Despite urgent calls for decarbonization, the continued increasing demand for electricity, primarily from coals, has presented challenges in managing coal-derived wastes such as coal fly ash (CFA), which are enriched with environmentally hazardous substances like boron. This study explores a low-temperature heating process [...] Read more.
Despite urgent calls for decarbonization, the continued increasing demand for electricity, primarily from coals, has presented challenges in managing coal-derived wastes such as coal fly ash (CFA), which are enriched with environmentally hazardous substances like boron. This study explores a low-temperature heating process to remove boron from coal, aimed at preventing its condensation and enrichment into CFA during combustion. Initial boron concentrations in coals varied widely from 50 to 500 ppm by weight and were found to correlate with fixed carbon content (FC) through the following polynomial equation: [B]o = 0.0929(FC)2 − 14.388(FC) + 601.85; R2 = 0.9173. This relationship suggests that as coal undergoes coalification, boron-containing compounds are decomposed and released, resulting in a decline in boron levels as the coal matures. Boron-removal efficiency was investigated by drying coal samples at 110 °C, 160 °C, and 210 °C under natural air convection, and nuclear magnetic resonance (NMR) spectroscopy was used to assess changes in boron speciation during heating. Our results demonstrate that boron removal ranged from 5% to 82%, with minimal improvements observed beyond 110 °C. In addition, the 11B MAS-NMR spectra of the coal samples showed four peaks at isotropic chemical shift values of −1.0, 2.0, 8.0, and 14.0 ppm and suggested that the species of boron volatilized at low temperatures is the inorganic BO4 assigned to peak no. 0 at −1.0 ppm. The association of boron with inorganic components in coal suggests potential for efficient removal, particularly in coals with higher fixed carbon content. These findings highlight the viability of low-temperature thermal treatment as a cost-effective method for boron removal, which is crucial in mitigating the risks associated with coal combustion by-products. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

16 pages, 5002 KiB  
Article
Porosity Characteristics of Coal Seams and the Control Mechanisms of Coal Petrology in the Xishanyao Formation in the Western Part of the Southern Junggar Basin
by Yuan Yuan, Yue Tang, Lihua Tong, Daiyong Cao, Yingchun Wei and Caiqin Bi
Minerals 2024, 14(6), 543; https://doi.org/10.3390/min14060543 - 24 May 2024
Cited by 1 | Viewed by 1308
Abstract
The porosity characteristics of coal seams serve as a pivotal factor in assessing the development potential of coalbed methane (CBM) resources, significantly influencing the adsorption and permeability capabilities of coal reservoirs, as well as the accumulation, entrapment, and preservation of CBM. In this [...] Read more.
The porosity characteristics of coal seams serve as a pivotal factor in assessing the development potential of coalbed methane (CBM) resources, significantly influencing the adsorption and permeability capabilities of coal reservoirs, as well as the accumulation, entrapment, and preservation of CBM. In this study, we focused on the coal seams of the Xishanyao Formation in the western part of the southern Junggar Basin (NW China). By leveraging the complementarity of nuclear magnetic resonance (NMR), low-temperature liquid nitrogen experiments, and high-pressure mercury intrusion porosimetry (MIP) in spatial exploration range and precision, we conducted a comprehensive analysis to achieve a fine description of porosity characteristics. Furthermore, we explored the coal petrology factors controlling the pore characteristics of the Xishanyao Formation, aiming to provide geological evidence for the selection of favorable areas and the development potential evaluation of CBM in the study area. The results indicate the following: (1) The total pore volume of the coal samples is 6.318 × 10−3 cm3/g on average, and the micropore volume accounts for a relatively high proportion (averaging 44.17%), followed by the fine pores (averaging 39.41%). The average porosity is approximately 3.87%, indicating good gas storage and connectivity of the coal seams, albeit with some heterogeneity. The coal reservoir is dominated by micropores and fine pores with diameters less than 100 nm, and the pore structure is characterized by low pore volume and high pore area. (2) The pore structure is influenced by both the coalification degree and the coal maceral. Within the range of low coalification, porosity increases with the increase in coalification degree. Building upon this, an increase in the vitrinite content promotes the development of micropores and fine pores, while an increase in the inertinite content promotes the development of meso–macropores. The clay mineral content exhibits a negative correlation with the adsorption pore volume ratio and a positive correlation with the seepage pore volume ratio. Full article
Show Figures

Figure 1

19 pages, 12923 KiB  
Article
Enrichment Factors and Metallogenic Models of Critical Metals in Late Permian Coal Measures from Yunnan, Guizhou, and Guangxi Provinces
by Bo Cao, Xuehai Fu, Junqiang Kang, Pan Tang and Hui Xu
Minerals 2024, 14(2), 206; https://doi.org/10.3390/min14020206 - 17 Feb 2024
Cited by 2 | Viewed by 1650
Abstract
The Late Permian coal measures in eastern Yunnan, western Guizhou, and central Guangxi are significantly enriched in critical metals that could serve as important supplements to conventional critical metal deposits in China. This study collected previous geochronological and geochemical data from the Late [...] Read more.
The Late Permian coal measures in eastern Yunnan, western Guizhou, and central Guangxi are significantly enriched in critical metals that could serve as important supplements to conventional critical metal deposits in China. This study collected previous geochronological and geochemical data from the Late Permian coal measures to evaluate the distribution characteristics and enrichment factors of critical metals. Moreover, metallogenic models for critical metals were also developed. The results showed that Late Permian coal measures in Yunnan, Guizhou, and Guangxi provinces exhibited abnormal enrichment in Nb, Zr, and rare earth elements (REY, or REE if Y is excluded). The Emeishan mafic rocks and intermediate-felsic volcanic ash from the Truong Son orogenic belt underwent chemical weathering, with Nb and Zr selectively preserved in situ in the form of heavy minerals (e.g., rutile, zircon, and anatase), which subsequently led to the enrichment of Nb and Zr in bauxite and Al-claystone at the bottom of the Late Permian coal measures. Intermediate-felsic volcanic ash from the Emeishan large igneous province (ELIP) and the Truong Son orogenic belt supplied Nb, Zr, and REY for the middle and upper parts of the Late Permian coal measures. The intermediate-felsic mineral material of the coal measures in the intermediate zone, outer zone, and outside zone of ELIP are derived mainly from the ELIP, the mixture from ELIP and the Truong Son orogenic belt, and the Truong Son orogenic belts, respectively. Nb, Zr, and REY were leached by acidic aqueous solutions and from the parting and roof into underlying coal seams, where they deposited as authigenic minerals or adsorbed ions on organic matter during early coalification. Full article
Show Figures

Figure 1

15 pages, 3813 KiB  
Article
Coalbed Methane Enrichment Regularity and Model in the Xishanyao Formation in the Santanghu Basin, NW China
by Xinning Li, Jiamin Zhou, Lixin Jiao, Bin Sun, Yangyang Huang, Diefang Huang, Junlang Zhang and Longyi Shao
Minerals 2023, 13(11), 1369; https://doi.org/10.3390/min13111369 - 26 Oct 2023
Cited by 2 | Viewed by 1571
Abstract
The Santanghu Basin is a typical low-rank coal-bearing basin in northwest China, with abundant coalbed methane (CBM) resources. However, the understanding of the main controlling factors and reservoir formation models of CBM in low-rank coal is still insufficient, which has restricted the exploration [...] Read more.
The Santanghu Basin is a typical low-rank coal-bearing basin in northwest China, with abundant coalbed methane (CBM) resources. However, the understanding of the main controlling factors and reservoir formation models of CBM in low-rank coal is still insufficient, which has restricted the exploration and development of CBM in this region. In this paper, the CBM enrichment controlling factors and enrichment models are analyzed based on the aspects of sedimentary environment, reservoir characteristics, sealing conditions, and hydrogeological conditions after systematically analyzing the geological characteristics of coal measures. The research results indicate that the coal seams of the Xishanyao Formation in the Santanghu Basin are stably developed, with the main macerals being vitrinite and a lower degree of coalification belonging to low-rank coal; the highest content of CBM can reach 7.17 m3/t, and the methane is mainly composed of biogenic gas supplemented by thermogenic gas; the roof lithology of the coal seam is mainly mudstone and siltstone, with good sealing conditions. Finally, two enrichment modes of coalbed methane in slope zones are proposed, namely, the CBM enrichment in the slope zone and the CBM enrichment by fault-hydraulic plugging. The results of this study can serve as a guide for the exploration and development of the deep-buried coalbed methane in the low-rank coal areas. Full article
Show Figures

Figure 1

15 pages, 5771 KiB  
Article
Evaluation and Optimization of Multi-Parameter Prediction Index for Coal Spontaneous Combustion Combined with Temperature Programmed Experiment
by Xuefeng Xu and Fengjie Zhang
Fire 2023, 6(9), 368; https://doi.org/10.3390/fire6090368 - 21 Sep 2023
Cited by 3 | Viewed by 1886
Abstract
Coal spontaneous combustion (CSC) is a serious threat to the safe mining of coal resources, and the selection of suitable gas indicators to predict the CSC state is crucial for the prevention and control of coal mine fires. In this paper, the temperature-programmed [...] Read more.
Coal spontaneous combustion (CSC) is a serious threat to the safe mining of coal resources, and the selection of suitable gas indicators to predict the CSC state is crucial for the prevention and control of coal mine fires. In this paper, the temperature-programmed experiment of CSC was first carried out to analyze the gas components and compositions in the oxidative pyrolysis process of three coal samples (lignite, long-flame coal, and lean coal) with different coalification degrees. Subsequently, the spontaneous combustion tendency of these three coal samples was evaluated. Finally, through the variation of gas concentration, gas concentration ratio, and fire coefficient with coal temperature, the indicators suitable for predicting the spontaneous combustion of coal were preferred, and a multi-parameter indicator system was established to make a comprehensive judgment on the spontaneous combustion status of coal. The results show that coal rank is negatively correlated with oxygen consumption rate. The higher the coalification degree of coal, the slower the oxidation reaction and the later the characteristic temperature point appears. The lignite selected in this experiment is a type of coal that is more prone to spontaneous combustion than long-flame coal and poor coal, and the CO concentration, C2H6/CH4, and second fire coefficient R2 can be used as the main indicators for predicting CSC, while the other gases, olefin-alkane ratio and fire coefficient can be used as auxiliary indicators. To some extent, the research content can effectively and accurately determine the stage and degree of coal spontaneous combustion, which has a certain guiding role in predicting CSC. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires)
Show Figures

Figure 1

19 pages, 5294 KiB  
Article
Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal
by Yuxuan Zhou, Shugang Li, Yang Bai, Hang Long, Yuchu Cai and Jingfei Zhang
Sustainability 2023, 15(12), 9599; https://doi.org/10.3390/su15129599 - 15 Jun 2023
Cited by 7 | Viewed by 1701
Abstract
The pore structure of low-rank coal reservoirs was highly complex. It was the basis for predicting the gas occurrence and outburst disasters. Different scale pores have different effects on adsorption–desorption, diffusion, and seepage in coalbed methane. To study the pore structure distribution characteristics, [...] Read more.
The pore structure of low-rank coal reservoirs was highly complex. It was the basis for predicting the gas occurrence and outburst disasters. Different scale pores have different effects on adsorption–desorption, diffusion, and seepage in coalbed methane. To study the pore structure distribution characteristics, which are in different scales of low-rank coal with different metamorphism grade, the pore structure parameters of low-rank coal were obtained by using the mercury injection, N2 adsorption, and CO2 adsorption. These three methods were used to test the pore volume and specific surface area of low-rank coal in their test ranges. Then, the fractal dimension method was used to calculate the fractal characteristics of the pore structure of full aperture section to quantify the complexity of the pore structure. The experimental results showed that the pore volume and specific surface area of low-rank coal were mainly controlled by microporous. The pore fractal characteristics were obvious. With the influence of coalification process, as the degree of coal metamorphism increases, fluctuations in the comprehensive fractal dimension, specific surface area, and pore volume of the pore size range occur within the range of Rmax = 0.50% to 0.65%. Full article
(This article belongs to the Collection Mine Hazards Identification, Prevention and Control)
Show Figures

Figure 1

Back to TopTop