Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = closed chamber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Viewed by 222
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

16 pages, 1677 KiB  
Article
222Rn Exhalation Rate of Building Materials: Comparison of Standard Experimental Protocols and Radiological Health Hazard Assessment
by Francesco Caridi, Lorenzo Pistorino, Federica Minissale, Giuseppe Paladini, Michele Guida, Simona Mancini, Domenico Majolino and Valentina Venuti
Appl. Sci. 2025, 15(14), 8015; https://doi.org/10.3390/app15148015 - 18 Jul 2025
Viewed by 241
Abstract
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed [...] Read more.
This study evaluates the accuracy of 222Rn exhalation rates from building materials using two standard experimental protocols, thus addressing the increasing importance of rapid radon assessment due to health concerns and regulatory limits. In detail, six types of natural stones frequently employed for the construction of buildings of historical-artistic relevance were analyzed using the closed chamber method (CCM) combined with the Durridge Rad7 system, by using two experimental protocols that differed in the measurement duration: 10 days (Method 1) versus 24 h (Method 2). Obtained results revealed that the radon exhalation rates ranged from 0.004 to 0.072 Bq h−1, which are moderate to low if compared to studies in other regions. Statistical comparison using the u-test confirmed equivalence between protocols (u-test ≤ 2), thus supporting the validity of the faster Method 2 for practical applications. Furthermore, to estimate the potential indoor radon levels and determine the associated radiological risks to human health, for the investigated natural stones, the Markkanen room model was employed. As a result, simulated indoor radon concentrations remained well below regulatory thresholds (maximum value: 37.3 Bq m−3), thus excluding any significant health concerns under typical indoor conditions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

25 pages, 7778 KiB  
Article
Pressure Characteristics Analysis of the Deflector Jet Pilot Stage Under Dynamic Skewed Velocity Distribution
by Zhilin Cheng, Wenjun Yang, Liangcai Zeng and Lin Wu
Aerospace 2025, 12(7), 638; https://doi.org/10.3390/aerospace12070638 - 17 Jul 2025
Viewed by 229
Abstract
The velocity distribution at the deflector jet outlet significantly influences the pressure characteristics of the pilot stage, thereby affecting the dynamic performance of the servo valve. Conventional mathematical models fail to account for the influence of dynamic velocity distribution on pilot stage pressure [...] Read more.
The velocity distribution at the deflector jet outlet significantly influences the pressure characteristics of the pilot stage, thereby affecting the dynamic performance of the servo valve. Conventional mathematical models fail to account for the influence of dynamic velocity distribution on pilot stage pressure characteristics, resulting in significant deviations from actual situations. As the deflector shifts, the secondary jet velocity distribution transitions from a symmetric to an asymmetric dynamic profile, altering the pressure within the receiving chambers. To address this, a dynamic skewed velocity distribution model is proposed to more accurately capture the pressure characteristics. The relationship between the skewness coefficient and deflector displacement is established, and the pressure calculation method for the receiving chambers is refined accordingly. A comparative analysis shows that the proposed model aligns most closely with computational fluid dynamics results, achieving a 98% match in velocity distribution and a maximum pressure error of 1.43%. This represents an improvement of 84.98% over the normal model and 82.35% over the uniform model, confirming the superior accuracy of the dynamic skewed model in pilot stage pressure calculation. Full article
(This article belongs to the Special Issue Aerospace Vehicles and Complex Fluid Flow Modelling)
Show Figures

Figure 1

20 pages, 3465 KiB  
Article
Phase-Controlled Closing Strategy for UHV Circuit Breakers with Arc-Chamber Insulation Deterioration Consideration
by Hao Li, Qi Long, Xu Yang, Xiang Ju, Haitao Li, Zhongming Liu, Dehua Xiong, Xiongying Duan and Minfu Liao
Energies 2025, 18(13), 3558; https://doi.org/10.3390/en18133558 - 5 Jul 2025
Viewed by 424
Abstract
To address the impact of insulation medium degradation in the arc quenching chambers of ultra-high-voltage SF6 circuit breakers on phase-controlled switching accuracy caused by multiple operations throughout the service life, this paper proposes an adaptive switching algorithm. First, a modified formula for [...] Read more.
To address the impact of insulation medium degradation in the arc quenching chambers of ultra-high-voltage SF6 circuit breakers on phase-controlled switching accuracy caused by multiple operations throughout the service life, this paper proposes an adaptive switching algorithm. First, a modified formula for the breakdown voltage of mixed gases is derived based on the synergistic effect. Considering the influence of contact gap on electric field distortion, an adaptive switching strategy is designed to quantify the dynamic relationship among operation times, insulation strength degradation, and electric field distortion. Then, multi-round switching-on and switching-off tests are carried out under the condition of fixed single-arc ablation amount, and the laws of voltage–current, gas decomposition products, and pre-breakdown time are obtained. The test data are processed by the least squares method, adaptive switching algorithm, and machine learning method. The results show that the coincidence degree of the pre-breakdown time obtained by the adaptive switching algorithm and the test value reaches 90%. Compared with the least squares fitting, this algorithm achieves a reasonable balance between goodness of fit and complexity, with prediction deviations tending to be randomly distributed, no obvious systematic offset, and low dispersion degree. It can also explain the physical mechanism of the decay of insulation degradation rate with the number of operations. Compared with the machine learning method, this algorithm has stronger generalization ability, effectively overcoming the defects of difficult interpretation of physical causes and the poor engineering adaptability of the black box model. Full article
Show Figures

Figure 1

21 pages, 1565 KiB  
Article
Levels of Zinc, Iron, and Copper in the Aqueous Humor of Patients with Primary Glaucoma
by Yangjiani Li, Zhe Liu, Zhidong Li, Yingting Zhu, Shuxin Liang, Hongtao Liu, Jingfei Xue, Jicheng Lin, Ye Deng, Caibin Deng, Simei Zeng, Yehong Zhuo and Yiqing Li
Biomolecules 2025, 15(7), 962; https://doi.org/10.3390/biom15070962 - 4 Jul 2025
Viewed by 301
Abstract
Background: This case–control study evaluated the concentrations of zinc (Zn), iron (Fe), and copper (Cu) in the aqueous humor (AH) of patients with primary glaucoma, and their relationships with clinical factors. Methods: This study enrolled 100 patients with primary glaucoma and categorized them [...] Read more.
Background: This case–control study evaluated the concentrations of zinc (Zn), iron (Fe), and copper (Cu) in the aqueous humor (AH) of patients with primary glaucoma, and their relationships with clinical factors. Methods: This study enrolled 100 patients with primary glaucoma and categorized them into subtypes: acute angle-closure crisis (AACC), primary angle-closure glaucoma (PACG), and primary open-angle glaucoma (POAG). A total of 67 patients with senile cataract were enrolled as controls. Their AH samples and clinical information were obtained. Results: In primary glaucoma, Zn, Fe, and Cu concentrations increased, especially in AACC group; Zn, Fe, and Cu were positively correlated mutually; and decreased Zn/Fe and increased Fe/Cu were observed. The number of quadrants with closed anterior chamber angle on gonioscopy was positively associated with Fe and Cu levels in AACC and with Zn and Cu levels in PACG. In POAG, we found negative associations between Zn and the number of quadrants with retinal nerve fiber layer thinning on optical coherence tomography, Fe and age, and Cu and the cup-to-disc ratio. Trace metals showed high efficiency in discriminating primary glaucoma from controls. Conclusions: Zn, Fe, and Cu concentrations in patients with primary glaucoma increased and were associated with clinical factors, acting as potential biomarkers. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

15 pages, 2017 KiB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Viewed by 302
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

22 pages, 4380 KiB  
Article
Utilization of Multisensor Satellite Data for Developing Spatial Distribution of Methane Emission on Rice Paddy Field in Subang, West Java
by Khalifah Insan Nur Rahmi, Parwati Sofan, Hilda Ayu Pratikasiwi, Terry Ayu Adriany, Dandy Aditya Novresiandi, Rendi Handika, Rahmat Arief, Helena Lina Susilawati, Wage Ratna Rohaeni, Destika Cahyana, Vidya Nahdhiyatul Fikriyah, Iman Muhardiono, Asmarhansyah, Shinichi Sobue, Kei Oyoshi, Goh Segami and Pegah Hashemvand Khiabani
Remote Sens. 2025, 17(13), 2154; https://doi.org/10.3390/rs17132154 - 23 Jun 2025
Viewed by 610
Abstract
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and [...] Read more.
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and regionally. However, limited studies have been conducted to measure locally specific EFs (EFlocal) through on-site assessments and modeling their spatial distribution effectively. This study aims to investigate the potential of multisensor satellite data to develop a spatial model of CH4 emission estimation on rice paddy fields under different water management practices, i.e., continuous flooding (CF) and alternate wetting and drying (AWD) in Subang, West Java, Indonesia. The model employed the national EF (EFnational) and EFlocal using the IPCC guidelines. In this study, we employed the multisensor satellite data to derive the key parameters for estimating CH4 emission, i.e., rice cultivation area, rice age, and EF. Optical high-resolution images were used to delineate the rice cultivation area, Sentinel-1 SAR imagery was used for identifying transplanting and harvesting dates for rice age estimation, and ALOS-2/PALSAR-2 was used to map the water regime for determining the scaling factor of the EF. The closed-chamber method has been used to measure the daily CH4 flux rate on the local sites. The results revealed spatial variability in CH4 emissions, ranging from 1–5 kg/crop/season to 20–30 kg/crop/season, depending on the water regime. Fields under CF exhibited higher CH4 emissions than those under AWD, underscoring the critical role of water management in mitigating CH4 emissions. This study demonstrates the feasibility of combining remote sensing data with the IPCC model to spatially estimate CH4 emissions, providing a robust framework for sustainable rice cultivation and greenhouse gas (GHG) mitigation strategies. Full article
Show Figures

Figure 1

21 pages, 2977 KiB  
Article
Performance Analysis of Piezoelectric Energy Harvesting System Under Varying Bluff Body Masses and Diameters—Experimental Study and Validation with 0–1 Test
by Paweł Karpiński, Bartłomiej Ambrożkiewicz, Zbigniew Czyż and Grzegorz Litak
Appl. Sci. 2025, 15(13), 6972; https://doi.org/10.3390/app15136972 - 20 Jun 2025
Viewed by 453
Abstract
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The [...] Read more.
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The research aimed to evaluate the impact of the bluff body’s mass and diameter on the efficiency of the piezoelectric energy harvesting system. Vibrations of the test object were induced by airflow within a chamber of a closed-loop wind tunnel. Five different bluff body masses were analyzed for each of three cylindrical diameters across an airflow velocity range of 1 m/s to 10 m/s. These experiments allowed for the recording of a series of voltage signals over time. The signals were then subjected to Fast Fourier Transform (FFT) analysis. Subsequently, the relationship between vibration frequency and airflow velocity was examined. The peak-to-peak voltage value was also analyzed to provide an overall assessment of the energy harvesting efficiency of the system under investigation. Finally, the 0–1 test for chaos was additionally employed as a diagnostic tool to assess the complexity of system dynamics based on time series data. This test allowed for distinguishing between oscillatory behavior and cases where the system became trapped in a potential well, revealing key transitions in dynamic regimes. Full article
(This article belongs to the Special Issue Nonlinear Vibration Analysis of Smart Materials)
Show Figures

Figure 1

21 pages, 3142 KiB  
Article
Design and Optimization of Modular Solid Rocket Grain Matching Multi-Thrust Performance Curve
by Wentao Li, Yunqin He, Yiyi Zhang and Guozhu Liang
Appl. Sci. 2025, 15(12), 6827; https://doi.org/10.3390/app15126827 - 17 Jun 2025
Viewed by 411
Abstract
Multi-thrust solid rocket motors are extensively used in tactical missiles. To effectively achieve the desired multi-thrust performance curve, firstly, the concept of modular grain is introduced. Star grain, slot grain, and end-burning grain are chosen as the fundamental templates, which can be flexibly [...] Read more.
Multi-thrust solid rocket motors are extensively used in tactical missiles. To effectively achieve the desired multi-thrust performance curve, firstly, the concept of modular grain is introduced. Star grain, slot grain, and end-burning grain are chosen as the fundamental templates, which can be flexibly combined to form an arbitrary multi-thrust performance curve. Secondly, a quadric approximation of the burning perimeter is derived, leading to the establishment of a governing equation for modular grain design. This equation ensures a close match between the resulting performance curve and the target one. Thirdly, the Nelder–Mead optimization algorithm is employed to maximize the propellant loading fraction and reduce the combustion chamber size. Finally, the method successfully produces single-thrust, dual-thrust, and triple-thrust grains. The results show that the relative maximum deviation between the designed and target pressure curves is less than 6.1%. Additionally, the best grain configuration is identified, which maximizes the propellant loading fraction while adhering to the throat-to-port ratio constraints. Consequently, the concept of modular grain offers a valuable approach for creating complex internal ballistic characteristics by combining simpler grain templates. This approach allows for fast, responsive motor conceptual design, prototyping, testing, and even production, thereby advancing the development of solid rocket motors in a more efficient and effective manner. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

11 pages, 593 KiB  
Article
Probabilistic Modeling of Dust-Induced FSO Attenuation for 5G/6G Backhaul in Arid Regions
by Maged Abdullah Esmail
Appl. Sci. 2025, 15(12), 6775; https://doi.org/10.3390/app15126775 - 16 Jun 2025
Viewed by 339
Abstract
Free-Space Optical (FSO) communication systems operating in arid regions, especially those envisioned for current and future 5G/6G networks, are significantly affected by dust storms, which cause signal attenuation and service disruptions. While previous studies have proposed deterministic models to characterize attenuation in both [...] Read more.
Free-Space Optical (FSO) communication systems operating in arid regions, especially those envisioned for current and future 5G/6G networks, are significantly affected by dust storms, which cause signal attenuation and service disruptions. While previous studies have proposed deterministic models to characterize attenuation in both controlled and real environments, probabilistic modeling approaches remain largely unexplored, particularly for capturing the variability of FSO signal attenuation under dust conditions. This study proposes a probabilistic model for FSO signal attenuation developed from experiments conducted in a repeatable and well-characterized controlled dust chamber. The chamber-based setup allowed precise manipulation of dust visibility levels and consistent data collection, serving as a benchmark for statistical modeling. We analyzed the measurements to fit appropriate probability distributions for modeling the signal attenuation as a random variable. The empirical data were fitted to several candidate distributions, and the Johnson SB distribution consistently achieved superior performance with R20.95 and RMSE and MAE values close to zero across all dust conditions. The results offer a foundational framework for modeling dust-induced attenuation as a random process, providing statistical bounds for FSO link planning in desert environments. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 829 KiB  
Article
Feasibility of Organic Fertilization for Reducing Greenhouse Gas Emissions Compared to Mineral Fertilization
by Sirio Douglas da Silva dos Reis, Marco Antonio Previdelli Orrico Junior, Michely Tomazi, Ana Carolina Amorim Orrico, Stéfane de Sousa Cunha and Isabele Paola de Oliveira Amaral
Grasses 2025, 4(2), 26; https://doi.org/10.3390/grasses4020026 - 16 Jun 2025
Viewed by 295
Abstract
The objective of this study was to evaluate the impact of different nitrogen sources (urea, compost, and digestate) on N2O and CH4 emissions and the forage production of Piatã grass in tropical pastures, with the aim of identifying the fertilization [...] Read more.
The objective of this study was to evaluate the impact of different nitrogen sources (urea, compost, and digestate) on N2O and CH4 emissions and the forage production of Piatã grass in tropical pastures, with the aim of identifying the fertilization practices that can balance productivity with environmental mitigation. The experiment included 10 forage cuts over a period of 14 months, from January 2017 to February 2018. The CH4 and N2O emissions were monitored using closed chambers and analyzed by gas chromatography. The forage production was assessed by weighing and drying the material. The emission intensity was calculated based on the global warming potential of the gases. The data were analyzed using ANOVA and compared by Tukey’s test (p ≤ 0.05). Fertilizer application increased the N2O emissions, with the highest flux (79.56 mg N-N2O/m2/day) observed for the digestate treatment (p < 0.01). The N2O consumption was the most significant for the control treatment (−5.90 mg N-N2O/m2/day) in July. The CH4 oxidation was prevalent across all the treatments, with the highest oxidation for the urea treatment (−49.80 µg C-CH4/m2/day) two days after fertilization. The dry matter production (DMP) was the highest with urea during the summer (16.9 t/ha; p < 0.01). The emission intensity values were 243.41 kg CO2eq/t DM for urea, 103.44 kg CO2eq/t DM for digestate, and 27.35 kg CO2eq/t DM for compost (p < 0.01). The compost application stimulated CH4 oxidation. In conclusion, compost can be considered an important alternative for fertilizing pasture areas, both from a productive and environmental perspective. Full article
(This article belongs to the Special Issue Feature Papers in Grasses)
Show Figures

Figure 1

24 pages, 3511 KiB  
Article
Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils
by Mario Flores Aroni, José Henrique Cattanio and Claudio José Reis de Carvalho
Forests 2025, 16(6), 944; https://doi.org/10.3390/f16060944 - 4 Jun 2025
Viewed by 1363
Abstract
Global warming is driven by the increasing atmospheric emissions of greenhouse gases. Soils are highly sensitive to climate change and can shift from being carbon reservoirs to carbon sources under warmer and wetter conditions. This study is the first to simultaneously measure trace [...] Read more.
Global warming is driven by the increasing atmospheric emissions of greenhouse gases. Soils are highly sensitive to climate change and can shift from being carbon reservoirs to carbon sources under warmer and wetter conditions. This study is the first to simultaneously measure trace gas fluxes in Euterpe oleracea (açaí) plantations in upland areas, contrasting them with floodplain areas managed for açaí production in the eastern Amazon. Flux measurements were conducted during both the rainy and dry seasons using the closed dynamic chamber technique. In upland areas, CO2 fluxes exhibited spatial (plateau vs. lowland) and temporal (hourly, daily, and seasonal) variations. During both the rainy and dry months, CH4 uptake in upland soils was higher in lowland areas compared to the plateau. When comparing the two ecosystems, upland areas emitted more CO2 during the rainy season, while floodplain areas released more CH4 into the atmosphere. Unexpectedly, during the dry season, floodplain soils produced more CO2 and captured more CH4 from the atmosphere compared to upland soils. In upland areas, CO2-equivalent production reached 59.1 Mg CO2-eq ha−1 yr−1, while in floodplain areas, it reached 49.3 Mg CO2-eq ha−1 yr−1. Soil organic matter plays a vital role in preserving water and microorganisms, enhancing ecosystem productivity in uniform açaí plantations and intensifying the transfer of CH4 from the atmosphere to the soil. However, excessive soil moisture can create anoxic conditions, block gas diffusion, reduce soil respiration, and potentially turn the soil from a sink into a source of CH4. Full article
(This article belongs to the Special Issue Forest Dynamics Under Climate and Land Use Change)
Show Figures

Figure 1

12 pages, 765 KiB  
Article
Effects of Acquisition Time and Viral Load of Source Plants on Infections of Two Tomato Begomoviruses in Bemisia tabaci
by Ya-Yu Huang, Wei-Hua Li, Kyeong-Yeoll Lee, Wen-Shi Tsai and Chi-Wei Tsai
Agriculture 2025, 15(11), 1195; https://doi.org/10.3390/agriculture15111195 - 30 May 2025
Viewed by 669
Abstract
Tomato yellow leaf curl disease poses one of the most severe threats to tomato production worldwide. This disease is associated with a group of closely related tomato yellow leaf curl viruses. These viruses can be transmitted by the sweet potato whitefly (Bemisia [...] Read more.
Tomato yellow leaf curl disease poses one of the most severe threats to tomato production worldwide. This disease is associated with a group of closely related tomato yellow leaf curl viruses. These viruses can be transmitted by the sweet potato whitefly (Bemisia tabaci) in a persistent-circulative mode. Virus particles can infect the midgut and filter chamber of whiteflies feeding on infected plants, circulate in the hemolymph, and eventually infect the primary salivary gland (PSG) of whiteflies. Later, the whiteflies feed on healthy plants, and viral particles are introduced into the plants through their saliva. Virus–vector interactions play a crucial role in the efficiency and dynamics of virus transmission. In this study, we assessed the effects of the acquisition time and viral load of source plants on infections of two tomato begomoviruses, tomato yellow leaf curl Thailand virus (TYLCTHV) and tomato leaf curl Taiwan virus (ToLCTV), in B. tabaci Middle East–Asia Minor 1. We found that more viruses were acquired and accumulated in the whitefly midgut and PSG before reaching a plateau when the acquisition time increased and when the source plant had a higher viral load. The midgut and PSG acquired and accumulated more TYLCTHV than ToLCTV with the same acquisition time and regardless of the viral loads in coinfected source plants. These results not only help us to understand virus–vector interactions but also help in developing integrated disease management strategies. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 30834 KiB  
Article
Study on Influence of Evaporation Tube Flow Distribution on Combustion Characteristics of Micro Combustion Chamber
by Yu Fu, Han Lin, Junli Yu, Aoju Song, Qing Guo, Zhenhua Wen and Wei Wu
Processes 2025, 13(6), 1691; https://doi.org/10.3390/pr13061691 - 28 May 2025
Viewed by 472
Abstract
The combustion chamber is a critical component of turbojet engines, and airflow distribution plays an essential role in ensuring flame stability and optimizing combustion efficiency. This study investigates a miniature annular combustion chamber by employing SolidWorks 2022 software to model an evaporative tube [...] Read more.
The combustion chamber is a critical component of turbojet engines, and airflow distribution plays an essential role in ensuring flame stability and optimizing combustion efficiency. This study investigates a miniature annular combustion chamber by employing SolidWorks 2022 software to model an evaporative tube combustion chamber. A dedicated combustion test platform was constructed for the proposed miniature combustion chamber. By adjusting the air and fuel flow ratios entering the evaporative tube, the temperature at the flame tube outlet was measured, and the combustion efficiency was subsequently calculated. In addition, numerical analysis was conducted using ANSYS/CFX software to simulate the flow field in the combustion chamber. The following conclusions were drawn from an analysis of the variations in the flow field and temperature field during the simulation process: When the flow rates in the ignition and dilution zones of the miniature annular combustion chamber remained constant, modifying the air-fuel flow ratio within the evaporative tube significantly enhanced the combustion characteristics within the chamber. Specifically, the combustion efficiency is closely related to the ratio of the air mass flow rate to the fuel mass flow rate within the evaporation tube. The highest combustion efficiency was achieved when the ratio fell within the range of 4.20 to 4.96. Furthermore, the area-averaged velocity at the combustion chamber outlet was independent of the air-fuel flow ratio but exhibited a positive correlation with the fuel flow entering the combustion chamber. Full article
Show Figures

Figure 1

15 pages, 2442 KiB  
Article
Complete Dosimetric Characterization of an In-House Manufactured SFRT Grid Collimator by 3D Printing with PLA-W Composite Filament
by José Velásquez, Melani Fuentealba and Mauricio Santibáñez
Polymers 2025, 17(11), 1496; https://doi.org/10.3390/polym17111496 - 28 May 2025
Viewed by 343
Abstract
This study presents a comprehensive dosimetric characterization and commissioning of a grid-type collimator manufactured via 3D printing using PLA-W composite filament, following an international protocol for small-field dosimetry. PLA doped with high concentrations of tungsten (>90% w/w) enables the fabrication [...] Read more.
This study presents a comprehensive dosimetric characterization and commissioning of a grid-type collimator manufactured via 3D printing using PLA-W composite filament, following an international protocol for small-field dosimetry. PLA doped with high concentrations of tungsten (>90% w/w) enables the fabrication of miniaturized collimators (<1 cm) with complex geometries, suitable for non-conventional radiotherapy applications. However, accurate assessment of spatial dose modulation is challenged by penumbra overlap between closely spaced beamlets, limiting the application of conventional instrumentation and protocols. To address this, absolute and relative dose distributions were evaluated for various radiation field configurations (number of beamlets) in both lateral and depth directions. Measurements were performed according to the IAEA TRS-483 protocol, using micro-ionization chambers and diode detectors. Additionally, long-term stability assessments were carried out to evaluate both the structural integrity and modulation performance of the printed grid over time. Point dose measurements using the same detectors were repeated after one year, and 2D surface dose distributions measured with EBT3 films were compared to SRS MapCHECK measurements two years later. The generated radiation field size of the central beamlet (FWHM) differed by less than 0.2% (15.8 mm) from the physical projection size (15.6 mm) and the lateral transmission due simultaneous beamlets resulted in FWHM variations of less than 3.8%, confirming manufacturing precision and collimator capability. Output factor measurements increased with the number of beamlets, from 0.75 for a single beamlet to 0.82 for the full beamlets configuration. No significant changes were observed in the depth of maximum dose across the different beamlets configurations (1.20 ± 0.20 cm). On the other hand, the long-term evaluations show no relevant changes in the FWHM or VPR, confirming the performance and reliability of the system. These results support the clinical feasibility and lasting performance stability of in-house manufactured grid collimators using PLA-W filaments and accessible 3D printing technology. Full article
(This article belongs to the Special Issue Polymeric Materials for 3D Printing)
Show Figures

Figure 1

Back to TopTop