Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = clock drift calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18196 KiB  
Article
A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks
by Yuqi Zhu, Binjian Shen, Biyuan Yao and Wei Wu
J. Mar. Sci. Eng. 2025, 13(8), 1422; https://doi.org/10.3390/jmse13081422 - 25 Jul 2025
Viewed by 174
Abstract
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies [...] Read more.
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies in sound speed modeling. This study proposes and validates a three-tier calibration framework consisting of a Dynamic Single-Difference (DSD) solver, a geometrically optimized reference buoy selection algorithm, and a Virtual Beacon (VB) depth inversion method based on sound speed profiles. Through simulations under varying noise conditions, the DSD method effectively mitigates common ranging and clock errors. The geometric reference optimization algorithm enhances the selection of optimal buoy layouts and reference points. At a depth of 4 km, the VB method improves vertical positioning accuracy by 15% compared to the DSD method alone, and nearly doubles vertical accuracy compared to traditional non-differential approaches. This research demonstrates that deep-sea underwater target calibration can be achieved without high-precision time synchronization and in the presence of fixed ranging errors. The proposed framework has the potential to lower technological barriers for large-scale deep-sea network deployments and provides a robust foundation for autonomous deep-sea exploration. Full article
Show Figures

Figure 1

18 pages, 2632 KiB  
Article
Cretaceous Connections Among Camel Cricket Lineages in the Himalaya Revealed Through Fossil-Calibrated Mitogenomic Phylogenetics
by Cheten Dorji, Mary Morgan-Richards and Steven A. Trewick
Insects 2025, 16(7), 670; https://doi.org/10.3390/insects16070670 - 27 Jun 2025
Viewed by 533
Abstract
The nocturnal, flightless camel crickets (Rhaphidophoridae) have a global distribution and are believed to have originated prior to the breakup of Pangea. We investigated the phylogeny and the timing of the radiation of East Asian species with mitogenomic data. Initially we analyzed a [...] Read more.
The nocturnal, flightless camel crickets (Rhaphidophoridae) have a global distribution and are believed to have originated prior to the breakup of Pangea. We investigated the phylogeny and the timing of the radiation of East Asian species with mitogenomic data. Initially we analyzed a large taxon dataset (n = 117) using available partial mitochondrial and nuclear DNA sequences to confirm the monophyly of subfamilies and current taxonomy. Our findings support the monophyly of each genus within the subfamily Aemodogryllinae, with a minor inconsistency between taxonomy and phylogeny resolved by resurrection of the genus Gymnaeta Adelung. Fossil-calibrated molecular clock analysis used 11,124 bp alignment of 13 complete mitochondrial protein-coding genes for 20 species of Rhaphidophoridae, with a focus on the neglected Rhaphidophorinae and Aemodogryllinae lineages. Divergence time estimates suggest that the most recent common ancestor of the family lived during the Early Jurassic (189 Mya ± 23 Mya) before Pangea broke into the supercontinents or possibly during the early stage of breakup when Gondwana and Laurasia were still connected by land. The two subfamilies, Rhaphidophorinae and Aemodogryllinae, that overlap in Asia are estimated to have diverged 138 Mya ± 17 Mya, well before the Late Cretaceous northern connection between America and Asia (the Bering Land Bridge). Thus, our extended sampling of species from East Asia and Oceania refutes the importance of continental drift in the evolution of this wingless orthopteran family. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

14 pages, 3543 KiB  
Article
Development of a Reference Device for the Calibration of Optical One-Shot Time-Interval Measurements
by Dalibor Kuhinek, Tomislav Bratko, Hrvoje Vukošić and Ivica Gavranić
Electronics 2023, 12(2), 439; https://doi.org/10.3390/electronics12020439 - 14 Jan 2023
Viewed by 1589
Abstract
This paper presents the development of a device that creates two or more light pulses with a precision time delay in a range from microseconds to several seconds and for the purpose of the calibration of velocity of detonation (VOD) measurement instruments. The [...] Read more.
This paper presents the development of a device that creates two or more light pulses with a precision time delay in a range from microseconds to several seconds and for the purpose of the calibration of velocity of detonation (VOD) measurement instruments. The device was assembled, programmed, and tested for functionality. Measurements were conducted using a reference counter. First, a precision OCXO (oven-controlled crystal oscillator) was used as a clock source. For verification of programmed subroutines, a counter oscillator output port was used as a source of clock signal for the microcontroller. This enabled the cancellation of possible oscillator errors. The signal had to be converted from an AC sine signal to a signal with positive values only using a clamper circuit. By the proposed solution, a calculable standard of time delay between two light pulses was achieved. According to the obtained results, this device can be used to calibrate field measurement devices for VOD measurements in explosives or some other use where the measurement device records the time interval between multiple light pulses. This enables more confidence in measurement results, faster recognition of instrument drift and increases the quality of measurement. Full article
(This article belongs to the Topic Advanced Systems Engineering: Theory and Applications)
Show Figures

Figure 1

16 pages, 1339 KiB  
Article
Decawave UWB Clock Drift Correction and Power Self-Calibration
by Juri Sidorenko, Volker Schatz, Norbert Scherer-Negenborn, Michael Arens and Urs Hugentobler
Sensors 2019, 19(13), 2942; https://doi.org/10.3390/s19132942 - 4 Jul 2019
Cited by 31 | Viewed by 5747
Abstract
The position accuracy based on Decawave Ultra-Wideband (UWB) is affected mainly by three factors: hardware delays, clock drift, and signal power. This article discusses the last two factors. The general approach to clock drift correction uses the phase-locked loop (PLL) integrator, which we [...] Read more.
The position accuracy based on Decawave Ultra-Wideband (UWB) is affected mainly by three factors: hardware delays, clock drift, and signal power. This article discusses the last two factors. The general approach to clock drift correction uses the phase-locked loop (PLL) integrator, which we show is subject to signal power variations, and therefore, is less suitable for clock drift correction. The general approach to the estimation of signal power correction curves requires additional measurement equipment. This article presents a new method for obtaining the curve without additional hardware and clock drift correction without the PLL integrator. Both correction methods were fused together to improve two-way ranging (TWR). Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 388 KiB  
Article
Power-Aware Synchronization of a Software Defined Clock
by Augusto Ciuffoletti
J. Sens. Actuator Netw. 2019, 8(1), 11; https://doi.org/10.3390/jsan8010011 - 18 Jan 2019
Cited by 1 | Viewed by 6699
Abstract
In a distributed system, a common time reference allows each component to associate the same timestamp to events that occur simultaneously. It is a design option with benefits and drawbacks since it simplifies and makes more efficient a number of functions, but requires [...] Read more.
In a distributed system, a common time reference allows each component to associate the same timestamp to events that occur simultaneously. It is a design option with benefits and drawbacks since it simplifies and makes more efficient a number of functions, but requires additional resources and control to keep component clocks synchronized. In this paper, we quantify how much power is spent to implement such a function, which helps to solve the dilemma in a system of low-power sensors. To find widely applicable results, the formal model used in our investigation is agnostic of the communication pattern that components use to synchronize their clocks, and focuses on the scheduling of clock synchronization operations needed to correct clock drift. This model helps us to discover that the dynamic calibration of clock drift significantly reduces power consumption. We derive an optimal algorithm to keep a software defined clock (SDCk) synchronized with the reference, and we find that its effectiveness is strongly influenced by hardware clock quality. To demonstrate the soundness of formal statements, we introduce a proof of concept. For its implementation, we privilege low-cost components and standard protocols, and we use it to find that the power needed to keep a clock within 200 ms from UTC (Universal Time Coordinate) as on the order of 10−5 W . The prototype is fully documented and reproducible. Full article
(This article belongs to the Special Issue Energy Management in Distributed Wireless Networks)
Show Figures

Figure 1

11 pages, 2361 KiB  
Letter
Non-Cooperative Bistatic SAR Clock Drift Compensation for Tomographic Acquisitions
by Mario Azcueta and Stefano Tebaldini
Remote Sens. 2017, 9(11), 1087; https://doi.org/10.3390/rs9111087 - 25 Oct 2017
Cited by 12 | Viewed by 4851
Abstract
In the last years, an important amount of research has been headed towards the measurement of above-ground forest biomass with polarimetric Synthetic Aperture Radar (SAR) tomography techniques. This has motivated the proposal of future bistatic SAR missions, like the recent non-cooperative SAOCOM-CS and [...] Read more.
In the last years, an important amount of research has been headed towards the measurement of above-ground forest biomass with polarimetric Synthetic Aperture Radar (SAR) tomography techniques. This has motivated the proposal of future bistatic SAR missions, like the recent non-cooperative SAOCOM-CS and PARSIFAL from CONAE and ESA. It is well known that the quality of SAR tomography is directly related to the phase accuracy of the interferometer that, in the case of non-cooperative systems, can be particularly affected by the relative drift between onboard clocks. In this letter, we provide insight on the impact of the clock drift error on bistatic interferometry, as well as propose a correction algorithm to compensate its effect. The accuracy of the compensation is tested on simulated acquisitions over volumetric targets, estimating the final impact on tomographic profiles. Full article
(This article belongs to the Special Issue Recent Advances in Polarimetric SAR Interferometry)
Show Figures

Figure 1

28 pages, 1890 KiB  
Article
New Automated Method to Develop Geometrically Corrected Time Series of Brightness Temperatures from Historical AVHRR LAC Data
by Sajid Pareeth, Luca Delucchi, Markus Metz, Duccio Rocchini, Abhay Devasthale, Martin Raspaud, Rita Adrian, Nico Salmaso and Markus Neteler
Remote Sens. 2016, 8(3), 169; https://doi.org/10.3390/rs8030169 - 25 Feb 2016
Cited by 11 | Viewed by 8442
Abstract
Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily [...] Read more.
Analyzing temporal series of satellite data for regional scale studies demand high accuracy in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites provide daily observations for the last 30 years at a nominal resolution of 1.1 km at nadir. However, complexities due to on-board malfunctions and orbital drifts with the earlier missions hinder the usage of these images at their original resolution. In this study, we developed a new method using multiple open source tools which can read level 1B radiances, apply solar and thermal calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform precise geo-rectification by automated generation and filtering of ground control points using a feature matching technique. The entire workflow is reproducible and extendable to any other geographical location. We developed a time series of brightness temperature maps from AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km resolution (1986–2014; 28 years). For the validation of derived brightness temperatures, we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and performed inter-platform (NOAA-x vs. NOAA-y) and cross-platform (NOAA-x vs. MODIS/ATSR/AATSR) comparisons. The MAE calculated over available same day observations between the pairs—NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 K, 0.67 K, 0.35 K, respectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 K. The validation of LSWT from various NOAA instruments with in-situ data shows high accuracy with mean R2 and RMSE of 0.97 and 0.91 K respectively. Full article
Show Figures

Graphical abstract

Back to TopTop