Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = classical trajectory Monte Carlo (CTMC) calculations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5583 KiB  
Article
Interaction of Protons with Noble-Gas Atoms: Total and Differential Cross Sections
by Musab Al-Ajaleen and Károly Tőkési
Atoms 2024, 12(5), 28; https://doi.org/10.3390/atoms12050028 - 7 May 2024
Cited by 2 | Viewed by 1563
Abstract
We present a classical treatment of the ionization and electron-capture processes in the interaction of protons with neutral noble-gas atoms, namely, Ne, Ar, Kr, and Xe. We used a three-body classical-trajectory Monte Carlo (CTMC) method to calculate the total (TCS) and differential (DCS) [...] Read more.
We present a classical treatment of the ionization and electron-capture processes in the interaction of protons with neutral noble-gas atoms, namely, Ne, Ar, Kr, and Xe. We used a three-body classical-trajectory Monte Carlo (CTMC) method to calculate the total (TCS) and differential (DCS) cross sections of single-electron processes. The Garvey-type model potential was employed in the CTMC model to describe the collision between the projectile and the target, accounting for the screening effect of the inactive electrons. The TCSs are evaluated for impact energies in the energy range between 0.2 keV and 50 MeV for a number of sub-shells of the targets. The ionization DCS are evaluated for an impact energy of 35 keV, focusing on the outer sub-shells only. We found that our ionization and electron-capture TCSs are in very good agreement with the previous theoretical and experimental data for all targets. Moreover, we presented single (SDCS)- and double (DDCS)-differential cross sections as a function of the energy and ejection angle of the ionized electron for all collision systems. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

9 pages, 1650 KiB  
Communication
Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section?
by Károly Tőkési and Saleh Alassaf
Atoms 2023, 11(9), 122; https://doi.org/10.3390/atoms11090122 - 15 Sep 2023
Viewed by 2059
Abstract
For the control of fusion reactors, we need to accurately know all the possible reactions and collisional cross sections. Although large-scale trials have been performed over the last decades to obtain this data, many basic atomic and molecular cross section data are missing [...] Read more.
For the control of fusion reactors, we need to accurately know all the possible reactions and collisional cross sections. Although large-scale trials have been performed over the last decades to obtain this data, many basic atomic and molecular cross section data are missing and the accuracy of the available cross sections need to be checked. Using the available measured cross sections and theoretical predictions of hydrogen atom ionization by proton impact, critical analysis of the data is presented. Moreover, we also present our recent classical results based on the standard classical trajectory Monte Carlo (CTMC) and quasi-classical trajectory Monte Carlo (C-QCTMC) models. According to our model calculations and comparison with the experimental data, recom-mended cross sections for ionization of hydrogen were presented in a wide range of pro-jectile impact energies. We found that, while in the low energy region, the experimental cross sections are very close to the C-QCTMC results, at higher energies, they are close to the results of our standard CTMC results. Full article
Show Figures

Figure 1

7 pages, 685 KiB  
Article
nl-Selective Classical Charge-Exchange Cross Sections in Be4+ and Ground State Hydrogen Atom Collisions
by Iman Ziaeian and Károly Tőkési
Atoms 2022, 10(3), 90; https://doi.org/10.3390/atoms10030090 - 9 Sep 2022
Cited by 2 | Viewed by 2037
Abstract
Charge-exchange cross sections in Be4+ + H(1s) collisions are calculated using the three-body classical trajectory Monte Carlo method (CTMC) and the quasi-classical trajectory Monte Carlo method of Kirschbaum and Wilets (QCTMC) for impact energies between 10 keV/amu and 300 keV/amu. We present [...] Read more.
Charge-exchange cross sections in Be4+ + H(1s) collisions are calculated using the three-body classical trajectory Monte Carlo method (CTMC) and the quasi-classical trajectory Monte Carlo method of Kirschbaum and Wilets (QCTMC) for impact energies between 10 keV/amu and 300 keV/amu. We present charge-exchange cross sections in the projectile n = 2 and nl = 2s, 2p states. Our results are compared with the previous quantum-mechanical approaches. We found that the QCTMC model is a powerful classical model to describe the state-selective charge-exchange cross sections at lower impact energies and the QCTMC results are in good agreement with previous observations. Full article
(This article belongs to the Special Issue Interaction of Electrons with Atoms, Molecules and Surfaces)
Show Figures

Figure 1

11 pages, 2397 KiB  
Article
Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision
by I. Ziaeian and K. Tőkési
Atoms 2020, 8(2), 27; https://doi.org/10.3390/atoms8020027 - 3 Jun 2020
Cited by 18 | Viewed by 3684
Abstract
The interaction between Be4+ and hydrogen atom is studied using the three-body classical trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target excitation, and charge [...] Read more.
The interaction between Be4+ and hydrogen atom is studied using the three-body classical trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target excitation, and charge exchange to the projectile bound states. Calculations are carried out in the projectile energy range between 10 and 1000 keV/au, relevant to the interest of fusion research when the target hydrogen atom is in the ground state. Our results are compared with previous theoretical results. We found that the classical treatment describes reasonably well the cross sections for various final channels. Moreover, we show that the calculations by the QTMC-KW model significantly improve the obtained cross sections. Full article
Show Figures

Figure 1

9 pages, 2464 KiB  
Article
Doubly and Triply Differential Cross Sections for Single Ionization of He by Fast Au53+ Using a Multi-Body Quasiclassical Model
by François Frémont
Atoms 2020, 8(2), 19; https://doi.org/10.3390/atoms8020019 - 6 May 2020
Cited by 1 | Viewed by 2489
Abstract
A multi-body multi-center quasiclassical model was used to determine doubly- and triply-differential cross sections following single ionization in 3.6 MeV/amu Au53+ + He collisions. The present model improved recent calculations, in which free electrons were added in the collision to reproduce, at [...] Read more.
A multi-body multi-center quasiclassical model was used to determine doubly- and triply-differential cross sections following single ionization in 3.6 MeV/amu Au53+ + He collisions. The present model improved recent calculations, in which free electrons were added in the collision to reproduce, at least qualitatively, the experimental binary peak. In the present calculations, the electrons, that were assumed to originate from the collisions of Au53+ with surfaces before colliding with the He target, were now considered to be in the field of the projectile, with nearly the same velocity. The agreement between the calculations and the experiment was improved, for both the doubly- and the triply-differential cross sections and was better than previous calculations based on quantum mechanics. Full article
Show Figures

Figure 1

9 pages, 2458 KiB  
Article
Transverse Momentum Transfer Distributions Following Single Ionization in 3.6 MeV/amu Au53+ + He Collisions: A 4-Body Classical Treatment
by François Frémont
Atoms 2018, 6(4), 68; https://doi.org/10.3390/atoms6040068 - 3 Dec 2018
Cited by 4 | Viewed by 3054
Abstract
A four-body classical model based on the resolution of Hamilton equations of motion was used here to determine and analyze ionization doubly-differential cross sections following 3.6 MeV/amu Au53+ + He collisions. Our calculation was not able to reproduce the binary peaks experimentally [...] Read more.
A four-body classical model based on the resolution of Hamilton equations of motion was used here to determine and analyze ionization doubly-differential cross sections following 3.6 MeV/amu Au53+ + He collisions. Our calculation was not able to reproduce the binary peaks experimentally observed in the transverse momentum distributions for electron emission energies larger than 10 eV. Surprisingly, by introducing a large number of free or quasi-free electrons that followed the projectile at the same velocity, the agreement between the experiment and our calculation was improved, since our model reproduced, at least qualitatively, the experimental binary peaks. The origin of the presence of such electrons is discussed. Full article
Show Figures

Figure 1

Back to TopTop