Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cis-verbenol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2535 KiB  
Article
Prediction of the Binding to the Nuclear Factor NF-Kappa-B by Constituents from Teucrium polium L. Essential Oil
by Renilson Castro de Barros, Renato Araújo da Costa, Nesrine Guenane, Boulanouar Bakchiche, Farouk Benaceur, Omer Elkiran, Suelem Daniella Pinho Farias, Vanessa Regina Silva Mota and Maria Fani Dolabela
Curr. Issues Mol. Biol. 2025, 47(1), 48; https://doi.org/10.3390/cimb47010048 - 14 Jan 2025
Viewed by 1165
Abstract
Teucrium polium L. is a plant with various claims of ethnobotanical use, primarily for inflammatory diseases. Chemical studies have already isolated different types of terpenes from the species, and studies have established its pharmacological potential. The present study evaluates the components of T. [...] Read more.
Teucrium polium L. is a plant with various claims of ethnobotanical use, primarily for inflammatory diseases. Chemical studies have already isolated different types of terpenes from the species, and studies have established its pharmacological potential. The present study evaluates the components of T. polium essential oil cultivated in the Algerian Saharan Atlas. GC-MS identified the major components as fenchone (31.25%), 3-carene (15.77%), cis-limonene oxide (9.77%), and myrcene (9.15%). In the in silico prediction, molecules with more than 1% abundance were selected. Regarding Lipinski’s rule, all molecules followed the rule. All molecules were found to be toxic in at least one model, with some molecules being non-genotoxic (6, 8, 10, 11, 12, 13) and others being non-mutagenic (5, 7, 9, 14). Three molecules were selected that showed the best results in pharmacokinetic and toxicity studies: the molecules that did not present carcinogenic potential (7—myrtenal; 9—myrtenol; 14—verbenol). The molecular target was established, and it seems that all three bound to the nuclear factor NF-kappa-B. Based on the docking and molecular dynamics results, these molecules have potential as anti-inflammatory and antitumor therapies, with further in vitro and in vivo studies needed to evaluate their activity and toxicity. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 3035 KiB  
Article
Antenna-Biased Odorant Receptor PstrOR17 Mediates Attraction of Phyllotreta striolata to (S)-Cis-Verbenol and (−)-Verbenone
by Zhanyi Xu, Peitong Chen, Ru Yan, Guoxing Chen, Jiali Qian, Guonian Zhu, Mengli Chen and Yirong Guo
Int. J. Mol. Sci. 2024, 25(8), 4362; https://doi.org/10.3390/ijms25084362 - 15 Apr 2024
Cited by 3 | Viewed by 1461
Abstract
Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the [...] Read more.
Phyllotreta striolata, the striped flea beetle, is one of the most destructive pests in Brassicaceae plants worldwide. Given the drawbacks associated with long-term use of chemical insecticides, green strategies based on chemical ecology are an effective alternative for beetle control. However, the lack of information on beetle ecology has hindered the development of effective biocontrol strategies. In this report, we identified two odorants, (S)-cis-verbenol and (−)-verbenone, which displayed significant attraction for P. striolata (p < 0.05), indicating their great potential for P. striolata management. Using the Drosophila “empty neuron” system, an antenna-biased odorant receptor, PstrOR17, was identified as responsible for the detection of (−)-verbenone and (S)-cis-verbenol. Furthermore, the interactions between PstrOR17 and (−)-verbenone or (S)-cis-verbenol were predicted via modeling and molecular docking. Finally, we used RNAi to confirm that PstrOR17 is essential for the detection of (−)-verbenone and (S)-cis-verbenol to elicit an attraction effect. Our results not only lay a foundation for the development of new and effective nonchemical insecticide strategies based on (S)-cis-verbenol and (−)-verbenone, but also provide new insight into the molecular basis of odorant recognition in P. striolata. Full article
Show Figures

Figure 1

10 pages, 904 KiB  
Article
A Study of the Chemical Composition, Antioxidant Potential, and Acute Toxicity of Bulgarian Tanacetum vulgare L. Essential Oil
by Diana Karcheva-Bahchevanska, Niko Benbassat, Yoana Georgieva, Borislava Lechkova, Stanislava Ivanova, Kalin Ivanov, Velislava Todorova, Lyudmil Peychev, Zhivko Peychev and Petko Denev
Molecules 2023, 28(16), 6155; https://doi.org/10.3390/molecules28166155 - 21 Aug 2023
Cited by 7 | Viewed by 2446
Abstract
Common tansy (Tanacetum vulgare L.) is a plant with medicinal properties that has traditionally been used in folk medicine for its anthelmintic, antispasmodic, and choleretic effects, for the treatment of diarrhea and digestive problems, and externally, as an insecticide in veterinary practices. [...] Read more.
Common tansy (Tanacetum vulgare L.) is a plant with medicinal properties that has traditionally been used in folk medicine for its anthelmintic, antispasmodic, and choleretic effects, for the treatment of diarrhea and digestive problems, and externally, as an insecticide in veterinary practices. In the current study, we investigated, for the first time, the chemical profile and antioxidant activity of essential oil from a wild population of T. vulgare L. growing in Bulgaria. Common tansy essential oil (EO), which is rich in bicyclic monoterpenes, was obtained using hydrodistillation and characterized by using gas chromatography–mass spectrometry (GC-MS). Thirty-seven compounds were identified in Bulgarian tansy EO. Among the major constituents were oxygenated monoterpenes, including compounds such as camphor (25.24%), trans-chrysantenyl acetate (18.35%), cis-verbenol (10.58%), thujone (6.06%), eucaliptol (5.99%), and α-campholenal (5.98%). The analysis results identified the essential oil from T. vulgare L. grown in the western Rhodope Mountains of Bulgaria as the camphor chemotype. Furthermore, its antioxidant activity was analyzed using the oxygen radical absorbance capacity (ORAC) method and was found to be 605.4 ± 49.3 µmol TE/mL. The essential oil was also tested for single-dose acute toxicity on Wistar rats and was found to be non-toxic by oral administration. The mean lethal dose by intraperitoneal administration was LD50 i.p. = 14.9 g/kg body weight. The results of the conducted study can serve as a basis for the evaluation and subsequent exploration of other pharmacotherapeutic effects of the essential oil obtained from the inflorescences of the Bulgarian species T. vulgare L. Full article
(This article belongs to the Special Issue Essential Oils II)
Show Figures

Figure 1

11 pages, 699 KiB  
Article
Terpenes Combinations Inhibit Biofilm Formation in Staphyloccocus aureus by Interfering with Initial Adhesion
by Claudia Salinas, Gladys Florentín, Fátima Rodríguez, Nelson Alvarenga and Rosa Guillén
Microorganisms 2022, 10(8), 1527; https://doi.org/10.3390/microorganisms10081527 - 28 Jul 2022
Cited by 18 | Viewed by 3091
Abstract
The biofilm is a conglomerate of cells surrounded by an extracellular matrix, which contributes to the persistence of infections. The difficulty in removing the biofilm drives the research for new therapeutic options. In this work, the effect of terpenes (−)-trans-Caryophyllene, ( [...] Read more.
The biofilm is a conglomerate of cells surrounded by an extracellular matrix, which contributes to the persistence of infections. The difficulty in removing the biofilm drives the research for new therapeutic options. In this work, the effect of terpenes (−)-trans-Caryophyllene, (S)-cis-Verbenol, (S)-(−)-Limonene, (R)-(+)-Limonene, and Linalool was evaluated, individually and in combinations on bacterial growth, by assay with resazurin; the formation of biofilm, by assay with violet crystal; and the expression of associated genes, by real-time PCR, in two clinical isolates of Staphyloccocus aureus, ST30-t019 and ST5-t311, responsible for more than 90% of pediatric infections by this pathogen in Paraguay. All combinations of terpenes can inhibit biofilm formation in more than 50% without affecting bacterial growth. The most effective combination was (−)-trans-Caryophyllene and Linalool at a 500 μg/mL concentration for each, with an inhibition percentage of 88%. This combination decreased the expression levels of the sdrD, spa, agr, and hld genes associated with the initial cell adhesion stage and quorum sensing. At the same time, it increased the expression levels of the cap5B and cap5C genes related to the production of capsular polysaccharides. The combinations of compounds tested are promising alternatives to inhibit biofilm formation in S. aureus. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

18 pages, 2884 KiB  
Article
Unveiling Chemical Cues of Insect-Tree and Insect-Insect Interactions for the Eucalyptus Weevil and Its Egg Parasitoid by Multidimensional Gas Chromatographic Methods
by Davide Mendes, Sofia Branco, Maria Rosa Paiva, Stefan Schütz, Eduardo P. Mateus and Marco Gomes da Silva
Molecules 2022, 27(13), 4042; https://doi.org/10.3390/molecules27134042 - 23 Jun 2022
Cited by 2 | Viewed by 2426
Abstract
Multidimensional gas chromatography is, presently, an established and powerful analytical tool, due to higher resolving power than the classical 1D chromatographic approaches. Applied to multiple areas, it allows to isolate, detect and identify a larger number of compounds present in complex matrices, even [...] Read more.
Multidimensional gas chromatography is, presently, an established and powerful analytical tool, due to higher resolving power than the classical 1D chromatographic approaches. Applied to multiple areas, it allows to isolate, detect and identify a larger number of compounds present in complex matrices, even in trace amounts. Research was conducted to determine which compounds, emitted by host plants of the eucalyptus weevil, Gonipterus platensis, might mediate host selection behavior. The identification of a pheromone blend of G. platensis is presented, revealing to be more attractive to weevils of both sexes, than the individual compounds. The volatile organic compounds (VOCs) were collected by headspace solid phase microextraction (HS-SPME), MonoTrapTM disks, and simultaneous distillation-extraction (SDE). Combining one dimensional (1D) and two-dimensional (2D) chromatographic systems—comprehensive and heart-cut two-dimensional gas chromatography (GC×GC and H/C-MD-GC, respectively) with mass spectrometry (MS) and electroantennographic (EAD) detection, enabled the selection and identification of pertinent semiochemicals which were detected by the insect antennal olfactory system. The behavioral effect of a selected blend of compounds was assessed in a two-arm olfactometer with ten parallel walking chambers, coupled to video tracking and data analysis software. An active blend, composed by cis and trans-verbenol, verbenene, myrtenol and trans-pinocarveol was achieved. Full article
Show Figures

Graphical abstract

18 pages, 2629 KiB  
Article
Biocatalytic Potential of Native Basidiomycetes from Colombia for Flavour/Aroma Production
by David A. Jaramillo, María J. Méndez, Gabriela Vargas, Elena E. Stashenko, Aída-M. Vasco-Palacios, Andrés Ceballos and Nelson H. Caicedo
Molecules 2020, 25(18), 4344; https://doi.org/10.3390/molecules25184344 - 22 Sep 2020
Cited by 9 | Viewed by 5357
Abstract
Aromas and flavours can be produced from fungi by either de novo synthesis or biotransformation processes. Herein, the biocatalytic potential of seven basidiomycete species from Colombia fungal strains isolated as endophytes or basidioma was evaluated. Ganoderma webenarium, Ganoderma chocoense, and Ganoderma [...] Read more.
Aromas and flavours can be produced from fungi by either de novo synthesis or biotransformation processes. Herein, the biocatalytic potential of seven basidiomycete species from Colombia fungal strains isolated as endophytes or basidioma was evaluated. Ganoderma webenarium, Ganoderma chocoense, and Ganoderma stipitatum were the most potent strains capable of decolourizing β,β-carotene as evidence of their potential as biocatalysts for de novo aroma synthesis. Since a species’ biocatalytic potential cannot solely be determined via qualitative screening using β,β-carotene biotransformation processes, we focused on using α-pinene biotransformation with mycelium as a measure of catalytic potential. Here, two strains of Trametes elegans—namely, the endophytic (ET-06) and basidioma (EBB-046) strains—were screened. Herein, T. elegans is reported for the first time as a novel biocatalyst for the oxidation of α-pinene, with a product yield of 2.9 mg of cis-Verbenol per gram of dry weight mycelia used. The EBB-046 strain generated flavour compounds via the biotransformation of a Cape gooseberry medium and de novo synthesis in submerged cultures. Three aroma-producing compounds were identified via GC–MS—namely, methyl-3-methoxy-4H-pyran-4-one, hexahydro-3-(methylpropyl)-pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(methylphenyl)-pyrrolo[1,2-a]pyrazine-1,4-dione. Full article
(This article belongs to the Special Issue Natural Products from Fungi)
Show Figures

Graphical abstract

14 pages, 2314 KiB  
Article
Initial Location Preference Together with Aggregation Pheromones Regulate the Attack Pattern of Tomicus brevipilosus (Coleoptera: Curculionidae) on Pinus kesiya
by Fu Liu, Chengxu Wu, Sufang Zhang, Xiangbo Kong, Zhen Zhang and Pingyan Wang
Forests 2019, 10(2), 156; https://doi.org/10.3390/f10020156 - 12 Feb 2019
Cited by 9 | Viewed by 3050
Abstract
Research Highlights: We found that the initial attack location together with the aggregation pheromones played an important role in mediating the aggressive behavior of T. brevipilosus on P. kesiya. Background and Objectives: T. brevipilosus was identified as an aggressive species, which possesses [...] Read more.
Research Highlights: We found that the initial attack location together with the aggregation pheromones played an important role in mediating the aggressive behavior of T. brevipilosus on P. kesiya. Background and Objectives: T. brevipilosus was identified as an aggressive species, which possesses the ability to kill live, healthy P. kesiya. In this scenario, we study the top-down attack pattern of T. brevipilosus on P. kesiya during the entirety of the reproductive period. Materials and Methods: We investigated the phenology of trunk attack on P. kesiya over a period of three years in Pu’er City, China. The hindguts extracts of the females and males T. brevipilosus were analyzed by coupled gas chromatography-mass spectrometry (GC-MS). The candidate aggregation pheromone compounds of T. brevipilosus were determined through electrophysiology experiments (electroantennographic detection, EAD and electroantennography, EAG), laboratory olfactometer bioassays, and field trapping. Results: we found that the pioneer beetles preferentially infested the crown of P. kesiya at the early stage of attack following spring flight with the later arriving beetles selectively attacking the lower area of the trunk to avoid intraspecific competition and better utilize limited resources, which exhibits a top-down attack pattern. During gallery initiation, the beetles release aggregation pheromones to attract conspecifics to conduct a mass attack. The chemical analyses indicated that the hindgut extracts of gallery-initiating beetles contained a larger amount of myrtenol, cis-verbenol, trans-verbenol, and verbenone. Myrtenol and trans-verbenol were identified as candidate aggregation pheromone compounds. In addition, a blend of these two components with S-(−)-α-pinene and S-(−)-β-pinene attracted more T. brevipilosus individuals in a field bioassay. Conclusions: We concluded that the preference for the initial attack location together with the aggregation pheromones played an important role in mediating the top-down attack pattern of T. brevipilosus on P. kesiya. Full article
(This article belongs to the Special Issue Impacts, Monitoring and Management of Forest Pests and Diseases)
Show Figures

Figure 1

Back to TopTop