Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = cis-phosphorylated tau protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2241 KiB  
Review
Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia
by Emmanuel Amabebe, Zheping Huang, Sukanta Jash, Balaji Krishnan, Shibin Cheng, Akitoshi Nakashima, Yitong Li, Zhixong Li, Ruizhi Wang, Ramkumar Menon, Xiao Zhen Zhou, Kun Ping Lu and Surendra Sharma
Biomedicines 2025, 13(1), 29; https://doi.org/10.3390/biomedicines13010029 - 26 Dec 2024
Viewed by 2757
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy [...] Read more.
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer’s disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis–trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Preeclampsia)
Show Figures

Figure 1

12 pages, 488 KiB  
Perspective
Trans- and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer’s Disease-like Type
by Ryszard Pluta and Stanisław J. Czuczwar
Int. J. Mol. Sci. 2024, 25(6), 3091; https://doi.org/10.3390/ijms25063091 - 7 Mar 2024
Cited by 5 | Viewed by 2121
Abstract
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer’s disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer’s disease. Brain ischemia and Alzheimer’s disease are [...] Read more.
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer’s disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer’s disease. Brain ischemia and Alzheimer’s disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment. Following brain ischemia in animals and humans, the presence of amyloid plaques in the extracellular space and intracellular neurofibrillary tangles was revealed. The phenomenon of tau protein hyperphosphorylation is a similar pathological feature of both post-ischemic brain injury and Alzheimer’s disease. In Alzheimer’s disease, the phosphorylated Thr231 motif in tau protein has two distinct trans and cis conformations and is the primary site of tau protein phosphorylation in the pre-entanglement cascade and acts as an early precursor of tau protein neuropathology in the form of neurofibrillary tangles. Based on the latest publication, we present a similar mechanism of the formation of neurofibrillary tangles after brain ischemia as in Alzheimer’s disease, established on trans- and cis-phosphorylation of tau protein, which ultimately influences the development of tauopathy. Full article
Show Figures

Figure 1

10 pages, 3798 KiB  
Article
Exploring the Therapeutic Potential of Phosphorylated Cis-Tau Antibody in a Pig Model of Traumatic Brain Injury
by Samuel S. Shin, Vanessa M. Mazandi, Andrea L. C. Schneider, Sarah Morton, Jonathan P. Starr, M. Katie Weeks, Nicholas J. Widmann, David H. Jang, Shih-Han Kao, Michael K. Ahlijanian and Todd J. Kilbaugh
Biomedicines 2023, 11(7), 1807; https://doi.org/10.3390/biomedicines11071807 - 24 Jun 2023
Cited by 4 | Viewed by 1936
Abstract
Traumatic brain injury (TBI) results in the generation of tau. As hyperphosphorylated tau (p-tau) is one of the major consequences of TBI, targeting p-tau in TBI may lead to the development of new therapy. Twenty-five pigs underwent a controlled cortical impact. One hour [...] Read more.
Traumatic brain injury (TBI) results in the generation of tau. As hyperphosphorylated tau (p-tau) is one of the major consequences of TBI, targeting p-tau in TBI may lead to the development of new therapy. Twenty-five pigs underwent a controlled cortical impact. One hour after TBI, pigs were administered either vehicle (n = 13) or PNT001 (n = 12), a monoclonal antibody for the cis conformer of tau phosphorylated at threonine 231. Plasma biomarkers of neural injury were assessed for 14 days. Diffusion tensor imaging was performed at day 1 and 14 after injury, and these were compared to historical control animals (n = 4). The fractional anisotropy data showed significant white matter injury for groups at 1 day after injury in the corona radiata. At 14 days, the vehicle-treated pigs, but not the PNT001-treated animals, exhibited significant white matter injury compared to sham pigs in the ipsilateral corona radiata. The PNT001-treated pigs had significantly lower levels of plasma glial fibrillary acidic protein (GFAP) at day 2 and day 4. These findings demonstrate a subtle reduction in the areas of white matter injury and biomarkers of neurological injury after treatment with PNT001 following TBI. These findings support additional studies for PNT001 as well as the potential use of this agent in clinical trials in the near future. Full article
(This article belongs to the Special Issue Porcine Models of Neurotrauma and Neurological Disorders)
Show Figures

Figure 1

14 pages, 2272 KiB  
Article
Earlier Detection of Alzheimer’s Disease Based on a Novel Biomarker cis P-tau by a Label-Free Electrochemical Immunosensor
by Ayoub Shiravandi, Farzaneh Yari, Nahid Tofigh, Mohammad Kazemi Ashtiani, Koorosh Shahpasand, Mohammad-Hossein Ghanian, Faezeh Shekari and Farnoush Faridbod
Biosensors 2022, 12(10), 879; https://doi.org/10.3390/bios12100879 - 17 Oct 2022
Cited by 15 | Viewed by 3846
Abstract
Early detection of cis phosphorylated tau (cis P-tau) may help as an effective treatment to control the progression of Alzheimer’s disease (AD). Recently, we introduced for the first time a monoclonal antibody (mAb) with high affinity against cis P-tau. In this study, [...] Read more.
Early detection of cis phosphorylated tau (cis P-tau) may help as an effective treatment to control the progression of Alzheimer’s disease (AD). Recently, we introduced for the first time a monoclonal antibody (mAb) with high affinity against cis P-tau. In this study, the cis P-tau mAb was utilized to develop a label-free immunosensor. The antibody was immobilized onto a gold electrode and the electrochemical responses to the analyte were acquired by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The immunosensor was capable of selective detection of cis P-tau among non-specific targets like trans P-tau and major plasma proteins. A wide concentration range (10 × 10−14 M–3.0 × 10−9 M) of cis P-tau was measured in PBS and human serum matrices with a limit of detection of 0.02 and 0.05 pM, respectively. Clinical applicability of the immunosensor was suggested by its long-term storage stability and successful detection of cis P-tau in real samples of cerebrospinal fluid (CSF) and blood serum collected from human patients at different stages of AD. These results suggest that this simple immunosensor may find great application in clinical settings for early detection of AD which is an unmet urgent need in today’s healthcare services. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

16 pages, 1571 KiB  
Review
Brain-Derived Exosomal Proteins as Effective Biomarkers for Alzheimer’s Disease: A Systematic Review and Meta-Analysis
by Ka Young Kim, Ki Young Shin and Keun-A Chang
Biomolecules 2021, 11(7), 980; https://doi.org/10.3390/biom11070980 - 3 Jul 2021
Cited by 23 | Viewed by 5008
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disease, affects approximately 50 million people worldwide, which warrants the search for reliable new biomarkers for early diagnosis of AD. Brain-derived exosomal (BDE) proteins, which are extracellular nanovesicles released by all cell lineages of the central nervous [...] Read more.
Alzheimer’s disease (AD), a progressive neurodegenerative disease, affects approximately 50 million people worldwide, which warrants the search for reliable new biomarkers for early diagnosis of AD. Brain-derived exosomal (BDE) proteins, which are extracellular nanovesicles released by all cell lineages of the central nervous system, have been focused as biomarkers for diagnosis, screening, prognosis prediction, and monitoring in AD. This review focused on the possibility of BDE proteins as AD biomarkers. The articles published prior to 26 January 2021 were searched in PubMed, EMBASE, Web of Science, and Cochrane Library to identify all relevant studies that reported exosome biomarkers in blood samples of patients with AD. From 342 articles, 20 studies were selected for analysis. We conducted a meta-analysis of six BDE proteins and found that levels of amyloid-β42 (standardized mean difference (SMD) = 1.534, 95% confidence interval [CI]: 0.595–2.474), total-tau (SMD = 1.224, 95% CI: 0.534–1.915), tau phosphorylated at threonine 181 (SMD = 4.038, 95% CI: 2.312-5.764), and tau phosphorylated at serine 396 (SMD = 2.511, 95% CI: 0.795–4.227) were significantly different in patients with AD compared to those in control. Whereas, those of p-tyrosine-insulin receptor substrate-1 and heat shock protein 70 did not show significant differences. This review suggested that Aβ42, t-tau, p-T181-tau, and p-S396-tau could be effective in diagnosing AD as blood biomarkers, despite the limitation in the meta-analysis based on the availability of data. Therefore, certain BDE proteins could be used as effective biomarkers for AD. Full article
(This article belongs to the Special Issue Biomolecular Investigations of Alzheimer's Diseases)
Show Figures

Figure 1

13 pages, 1007 KiB  
Review
Juglone in Oxidative Stress and Cell Signaling
by Taseer Ahmad and Yuichiro J. Suzuki
Antioxidants 2019, 8(4), 91; https://doi.org/10.3390/antiox8040091 - 5 Apr 2019
Cited by 122 | Viewed by 13090
Abstract
Juglone (5-hydroxyl-1,4-naphthoquinone) is a phenolic compound found in walnuts. Because of the antioxidant capacities of phenolic compounds, juglone may serve to combat oxidative stress, thereby protecting against the development of various diseases and aging processes. However, being a quinone molecule, juglone could also [...] Read more.
Juglone (5-hydroxyl-1,4-naphthoquinone) is a phenolic compound found in walnuts. Because of the antioxidant capacities of phenolic compounds, juglone may serve to combat oxidative stress, thereby protecting against the development of various diseases and aging processes. However, being a quinone molecule, juglone could also act as a redox cycling agent and produce reactive oxygen species. Such prooxidant properties of juglone may confer health effects, such as by killing cancer cells. Further, recent studies revealed that juglone influences cell signaling. Notably, juglone is an inhibitor of Pin1 (peptidyl-prolyl cis/trans isomerase) that could regulate phosphorylation of Tau, implicating potential effects of juglone in Alzheimer’s disease. Juglone also activates mitogen-activated protein kinases that could promote cell survival, thereby protecting against conditions such as cardiac injury. This review describes recent advances in the understanding of the effects and roles of juglone in oxidative stress and cell signaling. Full article
(This article belongs to the Special Issue Novel Aspects of Redox, Antioxidant and Mitochondrial Signaling)
Show Figures

Figure 1

Back to TopTop