Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = chromium-bearing steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 691
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

12 pages, 3289 KiB  
Article
The Mechanical Performance Enhancement of the CrN/TiAlCN Coating on GCr15 Bearing Steel by Controlling the Nitrogen Flow Rate in the Transition Layer
by Yuchuan Cheng, Junxiang Li, Fang Liu, Hongjun Li and Nu Yan
Coatings 2025, 15(3), 254; https://doi.org/10.3390/coatings15030254 - 20 Feb 2025
Viewed by 747
Abstract
The main focus of this work is the successful deposition of hard and wear-resistant TiAlCN coating on the surface of GCr15 bearing steel by means of magnetron sputtering technology. The phase composition of the chromium nitride transition layer was monitored by precisely controlling [...] Read more.
The main focus of this work is the successful deposition of hard and wear-resistant TiAlCN coating on the surface of GCr15 bearing steel by means of magnetron sputtering technology. The phase composition of the chromium nitride transition layer was monitored by precisely controlling the nitrogen (N2) flow rate to strengthen the bonding between the TiAlCN coating and the GCr15 bearing steel surface. It was found that coating performance reached the optimal state at a N2 flow rate of 40 sccm, yielding a hardness of 23.3 GPa, a friction coefficient of only 0.27, and a wear rate of 0.19 × 10−8 mm3/N·m. Full article
Show Figures

Figure 1

16 pages, 4414 KiB  
Article
Effect of Alternating Magnetic Field Treatment on the Friction/Wear Resistance of 20Cr2Ni4A Under Lubricated Conditions
by Sufyan Akram, Mose Bevilacqua, Anatolii Babutskyi and Andreas Chrysanthou
Metals 2025, 15(1), 69; https://doi.org/10.3390/met15010069 - 14 Jan 2025
Viewed by 717
Abstract
High-strength nickel–chromium steel (20Cr2Ni4A) is typically used in bearing applications. Alternating magnetic field treatment, which is based on the use of a magnetiser, and which is fast and cost-effective in comparison to conventional processes, was applied to the material to improve its wear [...] Read more.
High-strength nickel–chromium steel (20Cr2Ni4A) is typically used in bearing applications. Alternating magnetic field treatment, which is based on the use of a magnetiser, and which is fast and cost-effective in comparison to conventional processes, was applied to the material to improve its wear resistance. The results of pin-on-disc wear testing using a AISI 52100 alloy counter pin revealed a decrease in the specific wear rate of the treated samples by 58% and a reduction in the value of the coefficient of friction by 28%. X-ray diffraction analysis showed a small increase in the amount of martensite and higher surface compressive residual stresses by 28% leading to improved hardness. The observed changes were not induced thermally. The volume expansion by the formation of martensite was achieved at near room temperature and led to a further increase in compressive residual stresses. The significance of this study is that the improvement in the properties was achieved at a current density value that was two orders of magnitude higher than the threshold for phase transformation and dislocation movement. The reasons for the effect of the alternating magnetic field treatment on the friction and wear properties are discussed in terms of the contribution of the magnetic field to the austenite-to-martensite phase transformation and the interaction between the magnetic domain walls and dislocations. Full article
(This article belongs to the Special Issue Advances in Electromagnetic Processing of Metallic Materials)
Show Figures

Figure 1

17 pages, 13353 KiB  
Article
Microstructural, Nanomechanical, and Tribological Properties of Thin Dense Chromium Coatings
by E. Broitman, A. Jahagirdar, E. Rahimi, R. Meeuwenoord and J. M. C. Mol
Coatings 2024, 14(12), 1597; https://doi.org/10.3390/coatings14121597 - 20 Dec 2024
Cited by 2 | Viewed by 1141
Abstract
Nowadays, Thin Dense Chromium (TDC) coatings are being industrially used in rolling bearings applications due to their claimed advantages such as high hardness, low wear, and good corrosion resistance. However, despite their broad commercial use, very little has been published in the open [...] Read more.
Nowadays, Thin Dense Chromium (TDC) coatings are being industrially used in rolling bearings applications due to their claimed advantages such as high hardness, low wear, and good corrosion resistance. However, despite their broad commercial use, very little has been published in the open scientific literature regarding their microstructure, nanomechanical, and tribological properties. In this paper, TDC coatings with a thickness of about 5 µm were deposited by a customized electrochemical process on ASTM 52100 bearing steel substrates. Surface microstructure and chemical composition analysis of the TDC coatings was carried out by scanning electron microscopy and atomic force microscopy. The results revealed a coating with a dense, nodular, and polycrystalline microstructure. Unlike standard electrodeposited “Hard Chromium” coatings, TDC coatings show no presence of micro/nano-cracks, likely contributing to their superior corrosion resistance. The nanomechanical behavior, studied by nanoindentation as a function of penetration depths, exhibits a pronounced size effect near the coating surface that can be linked to the nodular microstructure. A hard surface with hardness HIT 14.9 ± 0.5 GPa and reduced elastic modulus Er = 216.8 ± 3.9 GPa was observed. Tribological characterization under the presence of lubricants was performed by two single-contact tribometers using coated and uncoated steel balls against flat steel substrates. An in-house fretting wear rig was used to measure the lubricated friction coefficient in pure sliding conditions, whilst the friction performance in rolling/sliding lubricated conditions was evaluated using a WAM test rig. In pure sliding, TDC/TDC contacts show ~13% lower friction than for steel. Under rolling/sliding conditions with 5% sliding, the traction coefficient of TDC/TDC coating contact was at least 20% lower than that for steel/steel contact. The tribological results obtained in various contact conditions demonstrate the benefits of applying TDC coatings to reduce bearing friction. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

14 pages, 3169 KiB  
Communication
Innovative Process for Strategic Metal Recovery from Electric Arc Furnace Slag by Alkaline Leaching
by Nour-Eddine Menad, Alain Seron and Sara Bensamdi
Metals 2024, 14(12), 1364; https://doi.org/10.3390/met14121364 - 29 Nov 2024
Viewed by 1725
Abstract
Currently, Electric Arc Furnace Slag (EAFS) is undervalued and is therefore only used in road construction, while blast furnace slag (BFS) is used as an interesting alternative in construction materials to replace natural aggregates in the manufacture of concrete. Steel slag (SS) represents [...] Read more.
Currently, Electric Arc Furnace Slag (EAFS) is undervalued and is therefore only used in road construction, while blast furnace slag (BFS) is used as an interesting alternative in construction materials to replace natural aggregates in the manufacture of concrete. Steel slag (SS) represents a promising secondary resource due to its high content of critical metals, such as chromium (Cr) and vanadium (V). These metals are essential for various strategic industries, making it crucial to consider slag as a resource rather than waste. However, the primary challenge lies in selectively recovering these valuable metals. In this work, we explore the development of a hydrometallurgical process aimed at efficiently extracting Cr and V from Electric Arc Furnace Slag (EAFS). The characterization of the investigated EAFS shows that the main crystalline phases contained in this heterogeneous material are srebrodolskite, larnite, hematite, and spinel such as probably magnesio-chromite. The targeted metals seem to be dispersed in various mineral species contained in the SS. An innovative hydrometallurgical method has been explored, involving physical preparation by co-grinding slag with alkaline reagents followed by treatment in a microwave furnace to modify the metal-bearing species to facilitate metal processing dissolution. The results obtained showed that the leaching rates of Cr and V were, respectively, 100% and 65% after 15 min of treatment in the microwave furnace, while, after 2 h of conventional heat treatment, as explored in a previous study, 98% and 63% of the Cr and V were, respectively, leached. Full article
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy—3rd Edition)
Show Figures

Figure 1

16 pages, 15862 KiB  
Article
Pulsed Magnetic Field Treatment Effects on Undissolved Carbides in Continuous Casting Billets of GCr15 Bearing Steel
by Lijuan Shen, Ruiqing Lang, Shuqing Xing and Yonglin Ma
Metals 2024, 14(7), 818; https://doi.org/10.3390/met14070818 - 16 Jul 2024
Viewed by 1372
Abstract
The study investigates the effect of pulsed magnetic fields on undissolved carbides in high-carbon chromium bearing steel GCr15 billets. The billets were subjected to heat treatment at 950 °C, with a pulsed magnetic field of varying durations applied during the process. The influence [...] Read more.
The study investigates the effect of pulsed magnetic fields on undissolved carbides in high-carbon chromium bearing steel GCr15 billets. The billets were subjected to heat treatment at 950 °C, with a pulsed magnetic field of varying durations applied during the process. The influence of the pulsed magnetic field on the distribution of undissolved carbides within the billets was investigated, and the thermodynamic and kinetic mechanisms of undissolved carbides dissolution were explored. The results indicate that the area percentage of undissolved carbides in the microstructure decreases from 1.68% to 0.06% after applying a pulsed magnetic field for 10 min, and the size of undissolved carbides decreases from 17.5 μm to 4.9 μm. When a pulsed magnetic field is applied for 30 min, all undissolved carbides dissolve. The statistics demonstrate that the average size of undissolved carbides is reduced from 14.19 μm to 0.63 μm, with a reduction percentage reaching 96%. Over the same duration, the number density of the undissolved carbides decreases from (0.19~0.55)/mm2 to (0.03~0.1)/mm2, and the percentage area of the undissolved carbides decreases from (1.26~1.68)% to (0~0.02)%. Thermodynamically, applying a pulsed magnetic field lowers the dissolution energy barrier of undissolved carbides and modifies their transformation temperature. Kinetically, the rate of alloy element diffusion is enhanced by increasing the frequency of atomic jumps. This research aims to provide new insights into enhancing the contact fatigue life of bearing steel, increasing the proportion of special steel, and optimizing the steel deep-processing process. Full article
Show Figures

Figure 1

21 pages, 12416 KiB  
Article
Effect of Rare Earth Y on Microstructure and Mechanical Properties of High-Carbon Chromium Bearing Steel
by Wenwen Xu, Luhua Liu, Qing Yang, Wei Zhou, Diqiang Luo, Cunchang Jiang, Binbing Yin and Chaobin Lai
Metals 2024, 14(4), 372; https://doi.org/10.3390/met14040372 - 22 Mar 2024
Cited by 3 | Viewed by 1849
Abstract
The effect of rare earth Y on the microstructure and properties of high-carbon chromium bearing steel in different heat treatment processes has been studied. The microstructure and mechanical properties of the bearing steel under hot rolled, annealed and quenched and tempered conditions were [...] Read more.
The effect of rare earth Y on the microstructure and properties of high-carbon chromium bearing steel in different heat treatment processes has been studied. The microstructure and mechanical properties of the bearing steel under hot rolled, annealed and quenched and tempered conditions were compared and analysed, focusing on the effect of inclusions on fatigue performance. The addition of rare earth Y improves the microstructure, Vickers hardness, tensile strength, impact toughness and fatigue properties of bearing steel. The results show that rare earth Y can refine and spheroidise cementite, make the distribution of cementite more uniform, enhance the strengthening effect of the second phase and reduce the stress concentration caused by the shape of cementite. At the same time, the formation of network cementite is inhibited and the harm to grain boundary is reduced. It also has a refining effect on the grain, and the refined grain can achieve better mechanical properties. In addition, by modifying the oxides and sulphides in the steel, the properties of the steel are also improved, particularly in the quenched and tempered state. Full article
Show Figures

Figure 1

19 pages, 9779 KiB  
Article
Effect of Carbides on Thermos-Plastic and Crack Initiation and Expansion of High-Carbon Chromium-Bearing Steel Castings
by Qian Feng, Yanan Zeng, Junguo Li, Yajun Wang, Guozhang Tang and Yitong Wang
Metals 2024, 14(3), 335; https://doi.org/10.3390/met14030335 - 14 Mar 2024
Cited by 2 | Viewed by 2129
Abstract
The bearing steel’s high-temperature brittle zone (1250 °C–1100 °C), second brittle zone (1100 °C–950 °C), and low-temperature brittle zone (800 °C–600 °C) were determined by the reduction in area and true fracture toughness. The crack sensitivity was strongest at temperatures of 1200 °C, [...] Read more.
The bearing steel’s high-temperature brittle zone (1250 °C–1100 °C), second brittle zone (1100 °C–950 °C), and low-temperature brittle zone (800 °C–600 °C) were determined by the reduction in area and true fracture toughness. The crack sensitivity was strongest at temperatures of 1200 °C, 1000 °C, and 600 °C, respectively. Various experimental and computational methods were used to establish the phase type, microstructure, size, and mechanical properties of carbides in bearing steel. The critical conditions for crack initiation in the matrix (FCC-Fe, FCC-Fe, and BCC-Fe)/carbides (striped Fe0.875Cr0.125C, netted Fe2.36Cr0.64C, and spherical Fe5.25Cr1.75C3) were also investigated. The values for the high-temperature brittle zone, the second brittle zone, and the low-temperature brittle zone were 13.85 MPa and 8.21 × 10−3, 4.64 MPa and 6.52 × 10−3, and 17.86 MPa and 1.86 × 10−2, respectively. These were calculated using Eshelby’s theory and ABAQUS 2021 version software. The ability of the three carbides to cause crack propagation was measured quantitatively by energy diffusion: M3C > MC > M7C3. This study analyzed the mechanism of carbide precipitation on the formation of high-temperature cracks in bearing steel casting. It also provided the critical conditions for carbide/matrix interface cracks in bearing steel continuous casting, thus providing effective support for improving the quality of bearing steel casting. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals)
Show Figures

Figure 1

20 pages, 24026 KiB  
Article
Improvement in Fatigue Strength of Chromium–Nickel Austenitic Stainless Steels via Diamond Burnishing and Subsequent Low-Temperature Gas Nitriding
by Jordan Maximov, Galya Duncheva, Angel Anchev, Vladimir Dunchev and Yaroslav Argirov
Appl. Sci. 2024, 14(3), 1020; https://doi.org/10.3390/app14031020 - 25 Jan 2024
Cited by 9 | Viewed by 1292
Abstract
Chromium–nickel austenitic stainless steels are widely used due to their high corrosion resistance, good weldability and deformability. To some extent, their application is limited by their mechanical characteristics. As a result of their austenitic structure, increasing the static and dynamic strength of the [...] Read more.
Chromium–nickel austenitic stainless steels are widely used due to their high corrosion resistance, good weldability and deformability. To some extent, their application is limited by their mechanical characteristics. As a result of their austenitic structure, increasing the static and dynamic strength of the components can be achieved by surface cold work. Due to the tendency of these steels to undergo intercrystalline corrosion, another approach to improving their mechanical characteristics is the use of low-temperature thermo-chemical diffusion processes. This article proposes a new combined process based on sequentially applied diamond burnishing (DB) and low-temperature gas nitriding (LTGN) to optimally improve the fatigue strength of 304 steel. The essence of the proposed approach is to combine the advantages of the two processes (DB and LTGN) to create a zone of residual compressive stresses in the surface and subsurface layers—the enormous surface residual stresses (axial and hoop) introduced by LTGN, with the significant depth of the compressive zone characteristic of static surface cold working processes. DB (both smoothing and single-pass hardening), in combination with LTGN, achieves a fatigue limit of 600 MPa, an improvement of 36.4% compared to untreated specimens. Individually, smoothing DB, single-pass DB and LTGN achieve 540 MPa, 580 MPa and 580 MPa, respectively. It was found that as the degree of plastic deformation of the surface layer introduced by DB increases, the content of the S-phase in the nitrogen-rich layer formed by LTGN decreases, with a resultant increased content of the ε-phase and a new (also hard) phase: stabilized nitrogen-bearing martensite. Full article
Show Figures

Figure 1

13 pages, 2002 KiB  
Article
Modeling Segregation of Fe–C Alloy in Solidification by Phase-Field Method Coupled with Thermodynamics
by Tong-Zhao Gong, Yun Chen, Wei-Ye Hao, Xing-Qiu Chen and Dian-Zhong Li
Metals 2023, 13(6), 1148; https://doi.org/10.3390/met13061148 - 20 Jun 2023
Cited by 7 | Viewed by 2126
Abstract
The primary carbide in high carbon chromium bearing steels, which arises from solute segregation during non-equilibrium solidification, is one of the key factors affecting the mechanical properties and performance of the related components. In this work, the effects of carbide forming element diffusion, [...] Read more.
The primary carbide in high carbon chromium bearing steels, which arises from solute segregation during non-equilibrium solidification, is one of the key factors affecting the mechanical properties and performance of the related components. In this work, the effects of carbide forming element diffusion, primary austenite grain size, and the cooling rate on solute segregation and carbide precipitation during the solidification of an Fe–C binary alloy were studied by the phase-field method coupled with a thermodynamic database. It was clarified that increasing the ratio of solute diffusivity in solid and liquid, refining the grain size of primary austenite to lower than a critical value, and increasing the cooling rate can reduce the solute segregation and precipitation of primary carbide at late solidification. Two characteristic parameters were introduced to quantitatively evaluate the solute segregation during solidification including the phase fraction threshold of primary austenite when the solute concentration in liquid reaches the eutectic composition, and the maximum segregation ratio. Both parameters can be well-correlated to the ratio of solute diffusivity in solid and liquid, the grain size of primary austenite, and the cooling rate, which provides potential ways to control the solute segregation and precipitation of primary carbide in bearing steels. Full article
(This article belongs to the Special Issue Modeling of Alloy Solidification)
Show Figures

Figure 1

15 pages, 5800 KiB  
Article
Effect of Heat Treatment on the Passive Film and Depassivation Behavior of Cr-Bearing Steel Reinforcement in an Alkaline Environment
by Yuwan Tian, Cheng Wen, Xiaohui Xi, Deyue Yang and Peichang Deng
Coatings 2023, 13(5), 964; https://doi.org/10.3390/coatings13050964 - 22 May 2023
Cited by 1 | Viewed by 2310
Abstract
Using Cr-bearing low-alloy steel is an effective preventive measure for marine structures, as it offers superior corrosion resistance when compared to plain carbon steel. However, it remains unclear how quenching and tempering heat treatment, which is commonly applied to steel reinforcement in some [...] Read more.
Using Cr-bearing low-alloy steel is an effective preventive measure for marine structures, as it offers superior corrosion resistance when compared to plain carbon steel. However, it remains unclear how quenching and tempering heat treatment, which is commonly applied to steel reinforcement in some specific environments to improve its mechanical properties, affects its corrosion resistance. In the present work, the impact of heat treatment on the passive film and depassivation behavior of the 0.2C-1.4Mn-0.6Si-5Cr steel are studied. The results reveal that quenching and tempering result in grain refinement of the Cr-bearing steel, which increases its hardness. However, this refinement causes significant degradation in its corrosion resistance. The critical [Cl]/[OH] ratio after quenching and tempering is determined to be approximately 6.6 times lower than that after normalization, and the corrosion rate is 1.6 times higher. After quenching and tempering, the passive film predominantly comprises iron oxides and hydroxides, with relatively high water content and defect density. Additionally, the FeII/FeIII ratio and film resistance are relatively low. In comparison, after normalization, the steel exhibits high corrosion resistance, with the passive film formed offering the highest level of protection. Full article
(This article belongs to the Topic Alloys and Composites Corrosion and Mechanical Properties)
Show Figures

Graphical abstract

23 pages, 6085 KiB  
Article
Enhancing the Fatigue Design of Mechanical Systems Such as Refrigerator to Reserve Food in Agroindustry for the Circular Economy
by Seongwoo Woo, Dennis L. O’Neal, Yimer Mohammed Hassen and Gezae Mebrahtu
Sustainability 2023, 15(8), 7010; https://doi.org/10.3390/su15087010 - 21 Apr 2023
Cited by 2 | Viewed by 2313
Abstract
To prolong the fatigue life of a product handled by machines such as refrigerators and agricultural machinery, parametric accelerated life testing (ALT) is recommended as a systemized approach to detect design inadequacies and reduce fatigue. It demands (1) an ALT strategy, (2) a [...] Read more.
To prolong the fatigue life of a product handled by machines such as refrigerators and agricultural machinery, parametric accelerated life testing (ALT) is recommended as a systemized approach to detect design inadequacies and reduce fatigue. It demands (1) an ALT strategy, (2) a fatigue type, (3) parametric ALTs with change, and (4) an estimate of whether the present product completes the BX lifetime. The utilization of a quantum-transported life-stress type and a sample size are advocated. The enhancements in the lifetime of a refrigerator ice-maker, containing an auger motor with bearings, were employed as a case study. In the 1st ALT, a steel rolling bearing cracked due to repeated loading under cold conditions (below −20 °C) in the freezer compartment. The bearing material was changed from an AISI 52100 Alloy Steel with 1.30–1.60% chromium to a lubricated sliding bearing with sintered and hardened steel (FLC 4608-110HT) because of its high fatigue strength at lower temperatures. In the 2nd ALT, a helix made of polycarbonates (PCs) fractured. In the redesign, a reinforced rib of the helix was thickened. Because no troubles in the 3rd ALT happened, the life of an ice-maker was proven to have a B1 life 10 years. Full article
(This article belongs to the Special Issue Toward a Circular Economy in the Agro-Industrial and Food Sectors)
Show Figures

Figure 1

12 pages, 20820 KiB  
Article
Effect of Copper on Microstructure and Corrosion Resistance of Hot Rolled 301 Stainless Steel
by Na Li, Hangxin Yan, Xuyuan Wang, Lei Xia, Yuchuan Zhu, Yan Li and Zhengyi Jiang
Metals 2023, 13(1), 170; https://doi.org/10.3390/met13010170 - 14 Jan 2023
Cited by 4 | Viewed by 2993
Abstract
The effect of copper (Cu) on hot-rolled 301 austenitic stainless steel (ASS) was studied by observing the microstructures and testing the electrochemical corrosion resistance properties. The results showed that, with the increase in Cu content, the size of shear zones in 301 ASS [...] Read more.
The effect of copper (Cu) on hot-rolled 301 austenitic stainless steel (ASS) was studied by observing the microstructures and testing the electrochemical corrosion resistance properties. The results showed that, with the increase in Cu content, the size of shear zones in 301 ASS decreased, and the number increased, which increased the uniformity of the microstructure macroscopically. The presence of Cu decreased the stacking fault energy of 301 ASS at elevated temperatures. Meanwhile, the amount of chromium (Cr) carbides decreased gradually with the increase in Cu content, which implies that the solid solution of Cu in hot-rolled 301 stainless steel promotes the solid solution of Cr and C in the steel, which is conducive to the formation of Cr-rich passivation films. As a result, the corrosion resistance of hot rolled Cu-bearing 301 stainless steel is improved, with both lower corrosion current density (Icorr) and passivation current (Ipass), and more positive corrosion potentials (Ecorr) and passivation potential (Ep), even though it does not show a higher pitting resistance. As Cu content in the steel was increased from 0.4% to 1.1%, the corrosion resistance was not further improved. Full article
(This article belongs to the Special Issue Trends in Technology of Surface Engineering of Metals and Alloys)
Show Figures

Figure 1

15 pages, 14662 KiB  
Article
Improved Wear and Corrosion Resistance in TiC-Reinforced SUS304 Stainless Steel
by Chieh-Jung Lu and Jien-Wei Yeh
J. Compos. Sci. 2023, 7(1), 34; https://doi.org/10.3390/jcs7010034 - 11 Jan 2023
Cited by 4 | Viewed by 3054
Abstract
Herein, the vacuum arc-melting process is applied to incorporate various amounts of Ti and C into SUS304 austenitic stainless steel based on the high-entropy alloy concept to obtain wear- and corrosion-resistant alloys with in situ carbide reinforcements. Five compositions containing the equivalent of [...] Read more.
Herein, the vacuum arc-melting process is applied to incorporate various amounts of Ti and C into SUS304 austenitic stainless steel based on the high-entropy alloy concept to obtain wear- and corrosion-resistant alloys with in situ carbide reinforcements. Five compositions containing the equivalent of 5, 10, 15, 20, and 25 volume percentages of TiC in SUS304 stainless steel, named A1, A2, A3, A4, and A5, respectively, were designed, melted, and solidified by the arc-melting method. Microstructural analyses, hardness measurements, immersion tests in four corrosive solutions, electrochemical measurements in a 3.5 wt % NaCl(aq) solution, and tribological tests were conducted to determine the properties and explain the relevant mechanisms. A1 exhibited a eutectic structure between FCC dendrites, while A2, A3, A4, and A5 possessed proeutectic dendritic TiC, FCC dendrites enveloping the TiC dendrites, and a eutectic structure. A5 represents the optimal composition. Its hardness, wear resistance, and corrosion resistance are 2, 14, and 4 times higher than those of SUS304, respectively. Additionally, its wear resistance is 2.5 times that of high-chromium cast iron. Consequently, A5 could have a 2.5-fold longer lifetime in wear operation. Therefore, A5 could be potentially applied in corrosive and abrasive environments, such as rotary shafts, rotors, bearings, and structural parts in food, chemical, and optoelectronic industries. Full article
(This article belongs to the Special Issue Metal Composites)
Show Figures

Figure 1

16 pages, 6172 KiB  
Article
Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method
by Vrushali Yogesh Bhalerao and Sanjay Shridhar Lakade
Coatings 2022, 12(12), 1940; https://doi.org/10.3390/coatings12121940 - 9 Dec 2022
Cited by 2 | Viewed by 2232
Abstract
In the current world of coatings and nanomaterials, specifically bearings, zinc, chromium, nickel, diamond-like coatings, and molybdenum disulfide are being used, to name but a few. Boron nitride in various forms has been used to enhance the surface properties, such as hardness, wear [...] Read more.
In the current world of coatings and nanomaterials, specifically bearings, zinc, chromium, nickel, diamond-like coatings, and molybdenum disulfide are being used, to name but a few. Boron nitride in various forms has been used to enhance the surface properties, such as hardness, wear resistance, and corrosion resistance of dies, tools, etc. In this paper, a significant focus is being given to the improvement of the surface properties of bearing-steel materials by the impregnation of cubic and hexagonal boron nitride nanoparticles. The vacuum heat treatment method is used for treating the sample pins of material equivalents to EN31. In the design of the experiments, the Taguchi method with L27 orthogonal array is used for the optimization of various parameters, such as the weight % of c-BN and h-BN nanoparticles and the temperature of the vacuum treatment. With the help of preliminary experimentation, the three levels of three parameters are decided. The microhardness analysis shows an improvement from 321 HV0.1 to 766 HV0.1 for a 50 µm case depth of nanoparticle impregnation. The evaluation of the influence of selected factors is also performed using ANOVA and the S/N ratio, and it was revealed that hex boron nitride (h-BN) affects the microhardness value more than the other two factors. The friction and wear testing reveal that the wear properties are improved by approximately 1.6 times, and the frictional force also decreases by approx. 1.4 times. Scanning electron microscope (SEM) analysis shows that the nanoparticles are penetrated by 21.09% and 46.99% atomic weight. In addition, a reduction in the friction coefficient and better wear response were achieved as a result of the heat treatment with nanoparticle impregnation. Full article
(This article belongs to the Special Issue Coatings for Tribological Applications)
Show Figures

Figure 1

Back to TopTop