Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = chloride ion permeation resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Viewed by 262
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Viewed by 464
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

29 pages, 5912 KiB  
Review
Mechanical Performance of Asphalt Materials Under Salt Erosion Environments: A Literature Review
by Wensheng Wang, Qingyu Zhang, Jiaxiang Liang, Yongchun Cheng and Weidong Jin
Polymers 2025, 17(8), 1078; https://doi.org/10.3390/polym17081078 - 16 Apr 2025
Viewed by 471
Abstract
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and [...] Read more.
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and deicing, coastal areas, and saline soils areas. In recent years, the performance evolution of asphalt materials under salt erosion environments has been widely investigated. However, there is a lack of a systematic summary of salt erosion damage for asphalt materials from a multi-scale perspective. The objective in this paper is to review the performance evolution and the damage mechanism of asphalt mixtures and binders under salt erosion environments from a multi-scale perspective. The salt erosion damage and damage mechanism of asphalt mixtures is discussed. The influence of salt categories and erosion modes on the asphalt binder is classified. The salt erosion resistance of different asphalt binders is determined. In addition, the application of microscopic test methods to investigate the salt damage mechanism of asphalt binders is generalized. This review finds that the pavement performance of asphalt mixtures decreased significantly after salt erosion. A good explanation for the salt erosion mechanism of asphalt mixtures can be provided from the perspective of pores, interface adhesion, and asphalt mortar. Salt categories and erosion modes exerted great influences on the rheological performance of asphalt binders. The performance of different asphalt binders showed a remarkable diversity under salt erosion environments. In addition, the evolution of the chemical composition and microscopic morphology of asphalt binders under salt erosion environments can be well characterized by Fourier Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), and microscopic tests. Finally, the major focus of future research and the challenges that may be encountered are discussed. From this literature review, pore expansion mechanisms differ fundamentally between conventional and salt storage asphalt mixtures. Sulfate ions exhibit stronger erosive effects than chlorides due to their chemical reactivity with asphalt components. Molecular-scale analyses confirm that salt solutions accelerate asphalt aging through light-component depletion and heavy-component accumulation. These collective findings from prior studies establish critical theoretical foundations for designing durable pavements in saline environments. Full article
Show Figures

Figure 1

12 pages, 3710 KiB  
Article
Preparation and Performance of Ultra-Fine High Activity Composite Micronized Powder from Multi-Solid Waste
by Penghuai Wang, Yang Ming, Ping Chen, Dengke Huang, Qiyang Zhu, Hao Ren and Xinheng Li
Appl. Sci. 2023, 13(24), 13155; https://doi.org/10.3390/app132413155 - 11 Dec 2023
Cited by 1 | Viewed by 1287
Abstract
The composite micronized powder is prepared by using blast furnace slag (BFS), water-quenched manganese slag (WQMS), manganese tailing slag (MTS) and desulfurization gypsum (DG) and grinding aid (GA) through orthogonal test optimization design. The effect of the doping amount of each solid waste [...] Read more.
The composite micronized powder is prepared by using blast furnace slag (BFS), water-quenched manganese slag (WQMS), manganese tailing slag (MTS) and desulfurization gypsum (DG) and grinding aid (GA) through orthogonal test optimization design. The effect of the doping amount of each solid waste on the fluidity, activity at different ages and resistance to chloride ion penetration of the composite micropowder was studied systematically, and the exothermic characteristics of hydration of the composite micropowder with the optimal ratio were tested. The results showed that the amount of MTS dosing was the most significant factor among the four factors on the activity index of composite micronized powder at 7 d and 28 d. The activity index at 28 d decreased and then increased with the increase in MTS dosing; the amount of BFS dosing was the most significant factor affecting the fluidity and chloride ion permeation resistance of composite micronized powder. With an increase in BFS dosing, the fluidity ratio of composite micronized powder increased and then decreased; the electric flux of the matrix decreased, and the chloride ion permeation resistance increased. The optimal ratio of composite powder with the highest 28 d activity is 35% BFS, 30% MTS, 0.3% GA, 5% DG and 30% WQMS. The hydration rate and cumulative heat release of the slurry prepared with the optimal ratio of composite micronized powder to cement (1:1) are lower than those of pure cement slurry. The microstructure of the mortar test block prepared with a 1:1 composite of cement is more compact than that of the pure cement mortar test block, and the pores are fewer. Full article
Show Figures

Figure 1

27 pages, 10310 KiB  
Article
Mechanical, Chloride Permeation, and Freeze–Thaw Resistance of Recycled Micronized Powder Polypropylene-Fiber-Engineered Cementitious Composites
by Lei Zheng and Jinzhi Zhou
Buildings 2023, 13(11), 2755; https://doi.org/10.3390/buildings13112755 - 31 Oct 2023
Cited by 4 | Viewed by 1319
Abstract
Research on engineered cementitious composites was carried out using recycled micronized powder from waste construction waste as a substitute for cement. Consequently, this paper focuses on the investigation of recycled micronized powder (RMP) as the subject of study. Using RMP-PP-ECCA0 as the control [...] Read more.
Research on engineered cementitious composites was carried out using recycled micronized powder from waste construction waste as a substitute for cement. Consequently, this paper focuses on the investigation of recycled micronized powder (RMP) as the subject of study. Using RMP-PP-ECCA0 as the control group, we explored the impact of polypropylene fiber content (0.5%, 1%, 1.5%, 2%) and the substitution rate of RMP (10%, 20%, 30%, 40%) on the mechanical properties, resistance to chloride ion penetration, and freeze–thaw durability of recycled micronized powder polypropylene-fiber-engineered cementitious composites (RMP-PP-ECCs). It was found that, with the increase in RMP substitution rate and fiber content, the mechanical, chloride ion permeation, and freeze–thaw resistance of recycled micronized powder polypropylene-fiber-engineered cementitious composites showed a trend of increasing and then decreasing when the RMP substitution rate was 10%, and the fiber content was 1.5%; the compressive, tensile, chloride ion permeation, and freeze–thaw resistance of recycled micronized powder polypropylene-fiber-engineered cementitious composites were most obviously improved. Compressive strength performance increased by 18.8%, tensile strength performance increased by 80.8%, maximum tensile strain increased by 314%, and electrical flux decreased by 56.3%. Meanwhile, when the recycled micronized powder substitution rate was 10%, the fiber content was 1%, with the most obvious improvement in flexural and freeze–thaw cycle resistance, compared with the control group 28 d flexural strength increased by 22%, after 150 freeze–thaw cycles, the mass-loss rate was reduced by 26%, and the relative dynamic elastic modulus was improved by 4%. In addition, the chemical composition of the regenerated microfractions and the defects in the matrix of the fracture surface of the tensile specimens, the distribution of polypropylene fibers, the surface morphology, and the failure mode were analyzed by X-ray diffraction and scanning electron microscopy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 6246 KiB  
Article
The Impact of Fractal Gradation of Aggregate on the Mechanical and Durable Characteristics of Recycled Concrete
by Chang-Qing Quan, Chu-Jie Jiao, Wei-Zhi Chen, Zhi-Cheng Xue, Rui Liang and Xue-Fei Chen
Fractal Fract. 2023, 7(9), 663; https://doi.org/10.3390/fractalfract7090663 - 31 Aug 2023
Cited by 13 | Viewed by 2110
Abstract
Properties of recycled aggregate concrete (RAC) are influenced by the composition and particle size distribution of recycled coarse aggregate (RCA). The study herein designed seven distinct groups of RACs with varying aggregate fractal dimensions (D) and one group of natural concrete [...] Read more.
Properties of recycled aggregate concrete (RAC) are influenced by the composition and particle size distribution of recycled coarse aggregate (RCA). The study herein designed seven distinct groups of RACs with varying aggregate fractal dimensions (D) and one group of natural concrete (NAC). The impact of D on the workability, compressive strength, resistance to chloride ion penetration, and carbonation resistance of RAC was measured. It was found that an increase in the D value led to a decrease in the slump and slump flow, with the compressive strength and chloride ion penetration increasing and then decreasing, and carbonation gradually declined. The optimal fractal dimension was thereby determined to be 2.547 by a strength model accommodating two parameters of D and the curing age. Additionally, the mass percentage of each particle size for the corresponding gradation was presented. The compressive strength and chloride permeation resistance of RAC (D = 1.0) relative to RAC (D = 2.5) was increased by 16.7% and 13.3%, respectively. Furthermore, the carbonation depth of RAC (D = 2.5) was comparable to that of NAC. Additionally, the carbonation resistance of RAC was influenced by both the size distribution and the degree of natural carbonation of RCA, resulting in four distinct features relative to NAC. It is thereby feasible to enhance RAC performance through the manipulation of RCA’s fractal dimensions. Full article
Show Figures

Figure 1

23 pages, 12211 KiB  
Article
Research on the Chloride Ion Penetration Resistance of Magnesium Phosphate Cement (MPC) Material as Coating for Reinforced Concrete Structures
by Yubing Du, Peiwei Gao, Jianming Yang and Feiting Shi
Coatings 2020, 10(12), 1145; https://doi.org/10.3390/coatings10121145 - 24 Nov 2020
Cited by 26 | Viewed by 3622
Abstract
This study focuses on the chloride ion penetration resistance of a magnesium phosphate cement (MPC)-based composite material coating on the surface of silicate material. By means of electrical flux method and electric acceleration corrosion tests, the anti-chlorine ion permeation and reinforcement properties of [...] Read more.
This study focuses on the chloride ion penetration resistance of a magnesium phosphate cement (MPC)-based composite material coating on the surface of silicate material. By means of electrical flux method and electric acceleration corrosion tests, the anti-chlorine ion permeation and reinforcement properties of MPC-based materials and Portland cement (OPC) mortar were compared and analyzed. The experimental results show that the electrical flux of the hardened body of the MPC-based material is much lower than that of the Portland cement mortar, and the electrical flux of the hardened body of the MPC mortar can be obviously reduced by adding silica-fume (SF) and fly ash (FA), which, when combined in a suitable proportion, will make the MPC’s hardened body more dense and impermeable. The addition of short cut fibers increases the number of pores, the pore size, and the electrical flux of the cement mortar’s hardened body. The adverse effects of the three fibers on the permeability of the MPC mortar against chlorine ions were as follows: polyvinyl alcohol fiber > glass fiber > basalt fiber. The electrical flux of MPC mortar or MPC paste coated on the surface of the OPC mortar was greatly reduced. Compared with silicate mortar, the MPC-based material has excellent protective performance under the condition of accelerated corrosion. Full article
(This article belongs to the Special Issue Interface and Surface Modification for Durable Concretes)
Show Figures

Figure 1

17 pages, 5169 KiB  
Article
Properties of Concrete Made with Low-Emission Cements CEM II/C-M and CEM VI
by Anna Król, Zbigniew Giergiczny and Justyna Kuterasińska-Warwas
Materials 2020, 13(10), 2257; https://doi.org/10.3390/ma13102257 - 14 May 2020
Cited by 17 | Viewed by 3778
Abstract
The paper presents the composition and properties of low-emission ternary cements: Portland multicomponent cement CEM II/C-M and multicomponent cement CEM VI. In the ternary cements, Portland clinker was replaced at the levels of 40% and 55% with a mixture of the main components [...] Read more.
The paper presents the composition and properties of low-emission ternary cements: Portland multicomponent cement CEM II/C-M and multicomponent cement CEM VI. In the ternary cements, Portland clinker was replaced at the levels of 40% and 55% with a mixture of the main components such as limestone (LL), granulated blast furnace slag (S) and siliceous fly ash (V). Portland multicomponent cements CEM II/C-M and CEM VI are low-emission binders with CO2 emissions ranging from 340 (CEM VI) kg to 453 (CEM II/C-M) kg per Mg of cement. The results obtained indicate the possibility of a wider use of ground limestone (LL) in cement composition. This is important in the case of limited market availability of fly ash and granulated blast furnace slag. The tests conducted on concrete have shown that the necessary condition for obtaining a high strength class and durability of concrete from CEM II/C-M and CEM VI ternary cements is low water–cement ratio. Durability characteristics of concrete (carbonation susceptibility, chloride ion permeation, frost resistance) made of CEM II/C-M and CEM VI cements were determined after 90 days of hardening. This period of curing reflects the performance properties of the concrete in a more effective way. Full article
(This article belongs to the Special Issue Research and Development of Modified Building Materials)
Show Figures

Figure 1

Back to TopTop