Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = chiral conjugated polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3632 KB  
Article
Electropolymerization of a New Diketopyrrollopyrrole Derivative into Inherent Chiral Polymer Films
by Felix Niebisch, Ullrich Scherf and Alex Palma-Cando
Nanomaterials 2024, 14(22), 1776; https://doi.org/10.3390/nano14221776 - 5 Nov 2024
Cited by 2 | Viewed by 1722
Abstract
Electropolymerization is a convenient way to obtain conducting polymers (CPs) directly adhered to an electrode surface. CPs are well-known for their various application fields in photovoltaic cells, chemical sensors, and electronics. By implementing chirality into a CP, the application possibilities will spread further [...] Read more.
Electropolymerization is a convenient way to obtain conducting polymers (CPs) directly adhered to an electrode surface. CPs are well-known for their various application fields in photovoltaic cells, chemical sensors, and electronics. By implementing chirality into a CP, the application possibilities will spread further onto chiral sensors or optoelectronics. In this work, we introduce a new inherently chiral polymer based on a macrocyclic 3,4-ethylenedioxythiophene-diketopyrrolopyrrole-3,4-ethylenedioxythiophene triad (EDOT-DPP-EDOT) fused by 1,4-phenylene groups, which was prepared via oxidative electropolymerization directly on the electrode surface. The investigation of the chiroptical properties was performed by circular dichroism spectroscopy in the solid state. The enantiomeric pure polymer films obtained showed dissymmetry factors of up to −2.71 × 10−4, whereby linear dichroism contributions can be widely excluded. Full article
Show Figures

Figure 1

24 pages, 12197 KB  
Review
Chiral Porous Organic Frameworks: Synthesis, Chiroptical Properties, and Asymmetric Organocatalytic Applications
by Miguel Sanchez-Fuente, José Lorenzo Alonso-Gómez, Laura M. Salonen, Ruben Mas-Ballesté and Alicia Moya
Catalysts 2023, 13(7), 1042; https://doi.org/10.3390/catal13071042 - 27 Jun 2023
Cited by 9 | Viewed by 4458
Abstract
Chiral porous organic frameworks have emerged in the last decade as candidates for heterogeneous asymmetric organocatalysis. This review aims to provide a summary of the synthetic strategies towards the design of chiral organic materials, the characterization techniques used to evaluate their chirality, and [...] Read more.
Chiral porous organic frameworks have emerged in the last decade as candidates for heterogeneous asymmetric organocatalysis. This review aims to provide a summary of the synthetic strategies towards the design of chiral organic materials, the characterization techniques used to evaluate their chirality, and their applications in asymmetric organocatalysis. We briefly describe the types of porous organic frameworks, including crystalline (covalent organic frameworks, COFs) and amorphous (conjugated microporous polymers, CMPs; covalent triazine frameworks, CTFs and porous aromatic frameworks, PAFs) materials. Furthermore, the strategies reported to incorporate chirality in porous organic materials are presented. We finally focus on the applications of chiral porous organic frameworks in asymmetric organocatalytic reactions, summarizing and categorizing all the available literature in the field. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

12 pages, 23842 KB  
Article
Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes
by Mingliang Gui, Yifei Han, Hua Zhong, Rui Liao and Feng Wang
Molecules 2021, 26(9), 2832; https://doi.org/10.3390/molecules26092832 - 10 May 2021
Cited by 4 | Viewed by 3706
Abstract
Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is [...] Read more.
Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is elaborately studied, by comparing supramolecular polymerization behaviors of two structurally similar monomers with the same platinum(II) acetylide cores. As compared to the N-phenyl benzamide linkages, N-[(1S)-1-phenylethyl] benzamide linkages give rise to effective chirality transfer behaviors due to the closer distances between the chiral units and the platinum(II) acetylide core. They also provide stronger intermolecular hydrogen bonding strength, which consequently brings higher thermo-stability and enhanced gelation capability for the resulting supramolecular polymers. Supramolecular polymerization is further strengthened by varying the monomers from monotopic to ditopic structures. Hence, with the judicious modulation of structural parameters, the current study opens up new avenues for the rational design of supramolecular polymeric systems. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Organometallic Chemistry)
Show Figures

Figure 1

19 pages, 7145 KB  
Review
Chiral Liquid Crystalline Electronic Systems
by Masahiro Funahashi
Symmetry 2021, 13(4), 672; https://doi.org/10.3390/sym13040672 - 13 Apr 2021
Cited by 14 | Viewed by 4367
Abstract
Liquid crystals bearing extended π-conjugated units function as organic semiconductors and liquid crystalline semiconductors have been studied for their applications in light-emitting diodes, field-effect transistors, and solar cells. However, studies on electronic functionalities in chiral liquid crystal phases have been limited so far. [...] Read more.
Liquid crystals bearing extended π-conjugated units function as organic semiconductors and liquid crystalline semiconductors have been studied for their applications in light-emitting diodes, field-effect transistors, and solar cells. However, studies on electronic functionalities in chiral liquid crystal phases have been limited so far. Electronic charge carrier transport has been confirmed in chiral nematic and chiral smectic C phases. In the chiral nematic phase, consisting of molecules bearing extended π-conjugated units, circularly polarized photoluminescence has been observed within the wavelength range of reflection band. Recently, circularly polarized electroluminescence has been confirmed from devices based on active layers of chiral conjugated polymers with twisted structures induced by the molecular chirality. The chiral smectic C phase of oligothiophene derivatives is ferroelectric and indicates a bulk photovoltaic effect, which is driven by spontaneous polarization. This bulk photovoltaic effect has also been observed in achiral polar liquid crystal phases in which extended π-conjugated units are properly assembled. In this manuscript, optical and electronic functions of these chiral π-conjugated liquid crystalline semiconductors are reviewed. Full article
(This article belongs to the Special Issue Symmetry and Liquid Crystals)
Show Figures

Figure 1

33 pages, 45457 KB  
Article
Synchronization in Non-Mirror-Symmetrical Chirogenesis: Non-Helical π–Conjugated Polymers with Helical Polysilane Copolymers in Co-Colloids
by Michiya Fujiki, Shun Okazaki, Nor Azura Abdul Rahim, Takumi Yamada and Kotohiro Nomura
Symmetry 2021, 13(4), 594; https://doi.org/10.3390/sym13040594 - 2 Apr 2021
Cited by 7 | Viewed by 3744
Abstract
A curious question is whether two types of chiroptical amplifications, called sergeants-and-soldiers (Ser-Sol) and majority-rule (Maj) effects, between non-charged helical copolymers and non-charged, non-helical homopolymers occur when copolymer encounter homopolymer in co-colloids. To address these topics, the present study chose (i) two helical [...] Read more.
A curious question is whether two types of chiroptical amplifications, called sergeants-and-soldiers (Ser-Sol) and majority-rule (Maj) effects, between non-charged helical copolymers and non-charged, non-helical homopolymers occur when copolymer encounter homopolymer in co-colloids. To address these topics, the present study chose (i) two helical polysilane copolymers (HCPSs) carrying (S)- or (R)-2-methylbutyl with isobutyl groups as chiral/achiral co-pendants (type I) and (S)- and (R)-2-methylbutyl groups as chiral/chiral co-pendants (type II) and (ii) two blue luminescent π-conjugated polymers, poly[(dioctylfluorene)-alt-(trans-vinylene)] (PFV8) and poly(dioctylfluorene) (PF8). Analyses of circular dichroism (CD) and circularly polarized luminescence (CPL) spectral datasets of the co-colloids indicated noticeable, chiroptical inversion in the Ser-Sol effect of PFV8/PF8 with type I HCPS. PF8 with type IIHCPS showed the anomalous Maj rule with chiroptical inversion though PFV8 with type IIHCPS was the normal Maj effect. The noticeable non-mirror-symmetric CD-and-CPL characteristics and marked differences in hydrodynamic sizes of these colloids were assumed to originate from non-mirror-symmetrical main-chain stiffness of HCPSs in dilute toluene solution. The present chirality/helicity transfer experiments alongside of previous/recent publications reported by other workers and us allowed to raise the fundamental question; is mirror symmetry on macroscopic levels in the ground and photoexcited states rigorously conserved? Full article
(This article belongs to the Special Issue Chiral Auxiliaries and Chirogenesis II)
Show Figures

Graphical abstract

51 pages, 11892 KB  
Review
Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics
by Michiya Fujiki
Symmetry 2021, 13(2), 199; https://doi.org/10.3390/sym13020199 - 26 Jan 2021
Cited by 7 | Viewed by 5589
Abstract
Metastable colloids made of crystalline and/or non-crystalline matters render abilities of photonic resonators susceptible to chiral chemical and circularly polarized light sources. By assuming that μm-size colloids and co-colloids consisting of π- and/or σ-conjugated polymers dispersed into an optofluidic medium are artificial models [...] Read more.
Metastable colloids made of crystalline and/or non-crystalline matters render abilities of photonic resonators susceptible to chiral chemical and circularly polarized light sources. By assuming that μm-size colloids and co-colloids consisting of π- and/or σ-conjugated polymers dispersed into an optofluidic medium are artificial models of open-flow, non-equilibrium coacervates, we showcase experimentally resonance effects in chirogenesis and photochirogenesis, revealed by gigantic boosted chiroptical signals as circular dichroism (CD), optical rotation dispersion, circularly polarized luminescence (CPL), and CPL excitation (CPLE) spectral datasets. The resonance in chirogenesis occurs at very specific refractive indices (RIs) of the surrounding medium. The chirogenesis is susceptible to the nature of the optically active optofluidic medium. Moreover, upon an excitation-wavelength-dependent circularly polarized (CP) light source, a fully controlled absolute photochirogenesis, which includes all chiroptical generation, inversion, erase, switching, and short-/long-lived memories, is possible when the colloidal non-photochromic and photochromic polymers are dispersed in an achiral optofluidic medium with a tuned RI. The hand of the CP light source is not a determining factor for the product chirality. These results are associated with my experience concerning amphiphilic polymerizable colloids, in which, four decades ago, allowed proposing a perspective that colloids are connectable to light, polymers, helix, coacervates, and panspermia hypotheses, nuclear physics, biology, radioisotopes, homochirality question, first life, and cosmology. Full article
(This article belongs to the Special Issue Chemical Symmetry Breaking)
Show Figures

Graphical abstract

15 pages, 1693 KB  
Article
On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes
by Franco Cataldo
Int. J. Mol. Sci. 2021, 22(1), 8; https://doi.org/10.3390/ijms22010008 - 22 Dec 2020
Cited by 6 | Viewed by 3715
Abstract
Optical rotatory dispersion (ORD) is a beautiful analytical technique for the study of chiral molecules and polymers. In this study, ORD was applied successfully to follow the degree of polycondensation of l-(+)-lactic acid toward the formation of poly(lactic acid) oligomers (PLAO) and [...] Read more.
Optical rotatory dispersion (ORD) is a beautiful analytical technique for the study of chiral molecules and polymers. In this study, ORD was applied successfully to follow the degree of polycondensation of l-(+)-lactic acid toward the formation of poly(lactic acid) oligomers (PLAO) and high molecular weight poly(l-lactic acid) (PLLA) in a simple esterification reaction equipment. PLLA is a biodegradable polymer obtainable from renewable raw materials. The racemization of the intrinsically isotactic PLLA through thermal treatment can be easily followed through the use of ORD spectroscopy. Organic or molecular electronics is a hot topic dealing with the combination of π-conjugated organic compounds and polymers with specific properties (e.g., chirality) which can be exploited to construct optoelectronic devices, such as organic light-emitting diodes (OLEDs), organic photovoltaic (OPV) high efficiency cells, switchable chirality devices, organic field-effect transistors (OFETs), and so on. ORD spectroscopy was applied to study either the gigantic optical rotation of PLLA films, as well as to detect successfully the excitonic coupling, occurring in thin solid PLLA green film loaded with a combination of two dyes: SY96 (a pyrazolone dye) and PB16 (the metal-free phthalocyanine pigment). The latter compound PLLA loaded with SY96 and PB16 shows a really gigantic optical activity in addition to typical ORD signal due to exciton coupling and may be considered as a simple and easily accessible model composite of a chiral polymer matrix combined with π-conjugated dyes for molecular electronics studies. Full article
(This article belongs to the Special Issue Molecular Nano-Architectures: Chemistry and Physics)
Show Figures

Figure 1

14 pages, 7098 KB  
Brief Report
Induction of Polyacetylene to a Chiral Smectic Liquid Crystal–Chiral Direct Conversion
by Akiko Yatsu, Takuya Yonehara and Hiromasa Goto
Polymers 2020, 12(7), 1547; https://doi.org/10.3390/polym12071547 - 13 Jul 2020
Cited by 1 | Viewed by 3439
Abstract
The synthesis of polyacetylene-bearing pyrimidine-type three-ringed mesogenic core exhibiting smectic C (SmC) characteristics was conducted. Gas-phase iodine doping of the polymer provided evidence of chemical interaction between the polyene and iodine, which acted as an electron acceptor. The side-chain fluorine atom tilted the [...] Read more.
The synthesis of polyacetylene-bearing pyrimidine-type three-ringed mesogenic core exhibiting smectic C (SmC) characteristics was conducted. Gas-phase iodine doping of the polymer provided evidence of chemical interaction between the polyene and iodine, which acted as an electron acceptor. The side-chain fluorine atom tilted the mesogen moiety to form SmC as a tilted liquid crystal. The addition of a small amount of chiral inducer yielded SmC* of the polymer as the chiral version of SmC. The liquid crystallinity and electronic properties of the π-conjugated chiral liquid crystal polymer with a helical structure were evaluated. Full article
(This article belongs to the Special Issue Polymerizations Promoted by Metal Complexes)
Show Figures

Graphical abstract

15 pages, 2341 KB  
Article
Chirality on Amorphous High-Tg Polymeric Nanofilms: Optical Activity Amplification by Thermal Annealing
by Tiziana Benelli, Massimiliano Lanzi, Laura Mazzocchetti and Loris Giorgini
Nanomaterials 2017, 7(8), 208; https://doi.org/10.3390/nano7080208 - 1 Aug 2017
Cited by 3 | Viewed by 4716
Abstract
The chiroptical properties of amorphous chiral polymers functionalized with conjugated trans-azoaromatic chromophore linked to the backbone through a chiral cyclic pyrrolidine moiety of one single configuration at the solid state, as thin films, were investigated. For the first time nanometric thin films [...] Read more.
The chiroptical properties of amorphous chiral polymers functionalized with conjugated trans-azoaromatic chromophore linked to the backbone through a chiral cyclic pyrrolidine moiety of one single configuration at the solid state, as thin films, were investigated. For the first time nanometric thin films of amorphous polymers (not liquid crystals) showed a remarkable chiral amplification upon thermal treatment at a temperature close to their Tg. The side-chain azobenzene chromophores rearrangement driven by the enhanced chain mobility seems to favor the formation of nanodomains of conformationally ordered macromolecular chains with one prevailing helical handedness whose optical activity depends on the configuration of the intrinsic chirality of the monomeric units and which as a result are stable at room temperature for a long time. Full article
(This article belongs to the Special Issue Frontiers in Chiral Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop