Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = check ball valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9299 KiB  
Article
Analysis of Ball Check Valves with Conical and Spherical Seat Designs from Common-Rail Pumps
by Narcis-Daniel Petrea, Razvan-Constantin Iordache and Carmen Bujoreanu
Machines 2022, 10(10), 959; https://doi.org/10.3390/machines10100959 - 20 Oct 2022
Cited by 4 | Viewed by 5777
Abstract
Common-rail fuel injection systems are still a good option for equipping new car models. The technology is well known, systems of this type are reliable and can be used on a wide variety of diesel and petrol engines. However, there is still room [...] Read more.
Common-rail fuel injection systems are still a good option for equipping new car models. The technology is well known, systems of this type are reliable and can be used on a wide variety of diesel and petrol engines. However, there is still room for improvement. The ball check valve, which is part of the common-rail pump, is designed to open and allow the compressed fluid to be sent to the high-pressure accumulator and close to not allow fuel to return to the compression chamber. The valves’ design directly influences the volumetric efficiency of the outlet flow and the robustness against high pressures that lead to low performance and short service life of the fuel injection systems. This paper aims to compare two ball check valves with conical and spherical seat designs. The analysis is based on theoretical calculations and CFD simulations, which will give more confidence in the results. Considering the comparative analysis results, the ball check valve with a spherical seat shows better flow dynamics than the ball check valve with a conical seat. In addition to the improved flow dynamics, the ball check valve with spherical seat seems to have a uniformly distributed fluid pressure inside the valve. In contrast, the conical seat ball check valve has high local fluid pressures, leading to fatigue. Full article
(This article belongs to the Special Issue Design and Manufacture of Advanced Machines)
Show Figures

Figure 1

14 pages, 12940 KiB  
Article
Evaluation of Magnus Force on Check Ball Behavior in a Hydraulic L Shaped Pipe
by Shinji Kajiwara
Fluids 2021, 6(5), 191; https://doi.org/10.3390/fluids6050191 - 19 May 2021
Viewed by 2566
Abstract
This paper presents the effect of the rotational speed of a check ball in a hydraulic L-tube on the translational motion caused by the Magnus effect. A spring-driven ball check valve is one of the most important components of a hydraulic system and [...] Read more.
This paper presents the effect of the rotational speed of a check ball in a hydraulic L-tube on the translational motion caused by the Magnus effect. A spring-driven ball check valve is one of the most important components of a hydraulic system and controls the position of the ball to prevent backflow. To simplify the structure, the springs must be eliminated. To this end, it is necessary to clarify the flow pattern of the check ball in an L-shaped pipe and the rotational and translational behaviors of the ball. In this study, the position of the inlet pipe and the availability of the check were determined using Computer Aided Engineering (CAE) tools. By moving the position of the inlet pipe from the top to the bottom of the housing, the direction of the rotation of the ball was reversed, and the behavior changed significantly. It was found that the Magnus force, which causes the ball to levitate by rotating it in the opposite direction to the flow, acts to shorten the floating time. Full article
(This article belongs to the Special Issue Modelling the Behaviour of Water Systems to Increase Sustainability)
Show Figures

Figure 1

14 pages, 2909 KiB  
Article
A Magnetically Tunable Check Valve Applied to a Lab-on-Chip Nitrite Sensor
by Sean C. Morgan, Andre D. Hendricks, Mae L. Seto and Vincent J. Sieben
Sensors 2019, 19(21), 4619; https://doi.org/10.3390/s19214619 - 24 Oct 2019
Cited by 7 | Viewed by 4630
Abstract
Presented here is the fabrication and characterization of a tunable microfluidic check valve for use in marine nutrient sensing. The ball-style valve makes use of a rare-earth permanent magnet, which exerts a pulling force to ensure it remains passively sealed until the prescribed [...] Read more.
Presented here is the fabrication and characterization of a tunable microfluidic check valve for use in marine nutrient sensing. The ball-style valve makes use of a rare-earth permanent magnet, which exerts a pulling force to ensure it remains passively sealed until the prescribed cracking pressure is met. By adjusting the position of the magnet, the cracking pressure is shown to be customizable to meet design requirements. Further applicability is shown by integrating the valve into a poly(methyl methacrylate) (PMMA) lab-on-chip device with an integrated optical absorbance cell for nitrite detection in seawater. Micro-milling is used to manufacture both the valve and the micro-channel structures. The valve is characterized up to a flow rate of 14 mL min−1 and exhibits low leakage rates at high back pressures (<2 µL min−1 at ~350 kPa). It is low cost, requires no power, and is easily implemented on microfluidic platforms. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

33 pages, 6276 KiB  
Article
A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland
by Tadeusz Nawrot, Radosław Matz, Ryszard Błażejewski and Marcin Spychała
Water 2018, 10(10), 1358; https://doi.org/10.3390/w10101358 - 29 Sep 2018
Cited by 10 | Viewed by 5738
Abstract
This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were [...] Read more.
This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were equipped with floating-ball check valves to avoid backflow. One of the pressure mains was used as a gravity collector conveying septic tank effluent in the direction of the pumping station during pump idle time. The operation of the system was simulated using SWMM computer code. The simulation results were validated for data obtained from part of a sewerage system in Kolonia Zolkiew and Rozki village consisting of two pumping stations and 86 serviced households using polyethylene pipes of outer diameter 50–63 mm. The results of the measurement of the outflows from one pumping station are presented. The simulation results showed good agreement with the empirical data, especially after several simulation days. The greatest discrepancy during the start-up period was the consequence of the initial conditions describing the empty pipework. Thanks to storage in the pump sumps, septic tank and pipes, as well as their smart operation, a relatively uniform inflow to the pumping stations was achieved. Simulations in SWMM showed that there is still potential to optimize the sewerage system through more adequate pump selection and pipe diameters. Full article
(This article belongs to the Special Issue Smart Hydraulics in Wastewater Transport)
Show Figures

Figure 1

13 pages, 810 KiB  
Article
Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications
by Ming-Tsun Ke, Jian-Hao Zhong and Chia-Yen Lee
Sensors 2012, 12(10), 13075-13087; https://doi.org/10.3390/s121013075 - 26 Sep 2012
Cited by 20 | Viewed by 8189
Abstract
This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and [...] Read more.
This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. Full article
(This article belongs to the Special Issue Microfluidic Devices)
Show Figures

Back to TopTop