Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cephamycinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5420 KiB  
Article
Two-Dose Ceftiofur Treatment Increases Cephamycinase Gene Quantities and Fecal Microbiome Diversity in Dairy Cows Diagnosed with Metritis
by Claudia Ossa-Trujillo, Ethan A. Taylor, Fatima Sarwar, Javier Vinasco, Ellen R. Jordan, Jose A. García Buitrago, G. Robert Hagevoort, Sara D. Lawhon, Juan M. Piñeiro, Jessica Galloway-Peña, Keri N. Norman and Harvey Morgan Scott
Microorganisms 2023, 11(11), 2728; https://doi.org/10.3390/microorganisms11112728 - 8 Nov 2023
Cited by 1 | Viewed by 2513
Abstract
Antimicrobial resistance is a significant concern worldwide; meanwhile, the impact of 3rd generation cephalosporin (3GC) antibiotics on the microbial communities of cattle and resistance within these communities is largely unknown. The objectives of this study were to determine the effects of two-dose ceftiofur [...] Read more.
Antimicrobial resistance is a significant concern worldwide; meanwhile, the impact of 3rd generation cephalosporin (3GC) antibiotics on the microbial communities of cattle and resistance within these communities is largely unknown. The objectives of this study were to determine the effects of two-dose ceftiofur crystalline-free acid (2-CCFA) treatment on the fecal microbiota and on the quantities of second-and third-generation cephalosporin, fluoroquinolone, and macrolide resistance genes in Holstein-Friesian dairy cows in the southwestern United States. Across three dairy farms, 124 matched pairs of cows were enrolled in a longitudinal study. Following the product label regimen, CCFA was administered on days 0 and 3 to cows diagnosed with postpartum metritis. Healthy cows were pair-matched based on lactation number and calving date. Fecal samples were collected on days 0, 6, and 16 and pooled in groups of 4 (n = 192) by farm, day, and treatment group for community DNA extraction. The characterization of community DNA included real-time PCR (qPCR) to quantify the following antibiotic resistance genes: blaCMY-2, blaCTX-M, mphA, qnrB19, and the highly conserved 16S rRNA back-calculated to gene copies per gram of feces. Additionally, 16S rRNA amplicon sequencing and metagenomics analyses were used to determine differences in bacterial community composition by treatment, day, and farm. Overall, blaCMY-2 gene copies per gram of feces increased significantly (p ≤ 0.05) in the treated group compared to the untreated group on day 6 and remained elevated on day 16. However, blaCTX-M, mphA, and qnrB19 gene quantities did not differ significantly (p ≥ 0.05) between treatment groups, days, or farms, suggesting a cephamycinase-specific enhancement in cows on these farms. Perhaps unexpectedly, 16S rRNA amplicon metagenomic analyses showed that the fecal bacterial communities from treated animals on day 6 had significantly greater (p ≤ 0.05) alpha and beta diversity than the untreated group. Two-dose ceftiofur treatment in dairy cows with metritis elevates cephamycinase gene quantities among all fecal bacteria while paradoxically increasing microbial diversity. Full article
(This article belongs to the Special Issue Foodborne Pathogens and Antimicrobial Resistance)
Show Figures

Figure 1

14 pages, 3043 KiB  
Article
Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors
by Scott T. Lefurgy, Emilia Caselli, Magdalena A. Taracila, Vladimir N. Malashkevich, Beena Biju, Krisztina M. Papp-Wallace, Jeffrey B. Bonanno, Fabio Prati, Steven C. Almo and Robert A. Bonomo
Biomolecules 2020, 10(5), 671; https://doi.org/10.3390/biom10050671 - 27 Apr 2020
Cited by 5 | Viewed by 3796
Abstract
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is [...] Read more.
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes. Full article
(This article belongs to the Special Issue Beta-Lactamases: Sequence, Structure, Function, and Inhibition)
Show Figures

Figure 1

10 pages, 238 KiB  
Article
Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria
by Igor Loncaric, Adriana Cabal Rosel, Michael P. Szostak, Theresia Licka, Franz Allerberger, Werner Ruppitsch and Joachim Spergser
Animals 2020, 10(2), 332; https://doi.org/10.3390/ani10020332 - 20 Feb 2020
Cited by 19 | Viewed by 3715
Abstract
The aim of the present study was to investigate the diversity of broad-spectrum cephalosporin-resistant Klebsiella spp. isolated from horses in Austria that originated from diseased horses. A total of seven non-repetitive cefotaxime-resistant Klebsiella sp. isolates were obtained during diagnostic activities from autumn 2012 [...] Read more.
The aim of the present study was to investigate the diversity of broad-spectrum cephalosporin-resistant Klebsiella spp. isolated from horses in Austria that originated from diseased horses. A total of seven non-repetitive cefotaxime-resistant Klebsiella sp. isolates were obtained during diagnostic activities from autumn 2012 to October 2019. Antimicrobial susceptibility testing was performed. The isolates were genotyped by whole-genome sequencing (WGS). Four out of seven Klebsiella isolates were identified as K. pneumoniae, two as K. michiganensis and one as K. oxytoca. All isolates displayed a multi-drug resistant phenotype. The detection of resistance genes reflected well the phenotypic resistance profiles of the respective isolates. All but one isolate displayed the extended-spectrum β-lactamases (ESBL) phenotype and carried CTX-M cefotaximases, whereas one isolate displayed an ESBL and AmpC phenotype and carried cephamycinase (CMY)-2 and sulfhydryl variable (SHV)-type b and Temoniera (TEM) β-lactamases. Among Klebsiella pneumoniae isolates, for different sequence types (ST) could be detected (ST147, ST307, ST1228, and a new ST4848). Besides resistance genes, a variety of virulence genes, including genes coding for yersiniabactin were detected. Considering the high proximity between horses and humans, our results undoubtedly identified a public health issue. This deserves to be also monitored in the years to come. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Horses)
Back to TopTop