Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Priority List of Antibiotic-Resistant Batceria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 1 January 2020).
- Ewers, C.; Stamm, I.; Pfeifer, Y.; Wieler, L.H.; Kopp, P.A.; Schønning, K.; Prenger-Berninghoff, E.; Scheufen, S.; Stolle, I.; Günther, S.; et al. Clonal Spread of Highly Successful ST15-CTX-M-15 Klebsiella pneumoniae in Companion Animals and Horses. J. Antimicrob. Chemother. 2014, 69, 2676–2680. [Google Scholar] [CrossRef] [PubMed]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Vo, A.T.T.; van Duijkeren, E.; Fluit, A.C.; Gaastra, W. Characteristics of Extended-Spectrum Cephalosporin-Resistant Escherichia coli and Klebsiella pneumoniae Isolates from Horses. Vet. Microbiol. 2007, 124, 248–255. [Google Scholar] [CrossRef]
- Börjesson, S.; Greko, C.; Myrenås, M.; Landén, A.; Nilsson, O.; Pedersen, K. A Link between the Newly Described Colistin Resistance Gene Mcr-9 and Clinical Enterobacteriaceae Isolates Carrying BlaSHV-12 from Horses in Sweden. J. Glob. Antimicrob. Resist. 2019. [Google Scholar] [CrossRef]
- Da Roza, F.T.; Couto, N.; Carneiro, C.; Cunha, E.; Rosa, T.; Magalhães, M.; Tavares, L.; Novais, Â.; Peixe, L.; Rossen, J.W.; et al. Commonality of Multidrug-Resistant Klebsiella pneumoniae ST348 Isolates in Horses and Humans in Portugal. Front. Microbiol. 2019, 10, 1657. [Google Scholar] [CrossRef]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae from Humans, Companion Animals and Horses in Central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef]
- Shnaiderman-Torban, A.; Paitan, Y.; Arielly, H.; Kondratyeva, K.; Tirosh-Levy, S.; Abells-Sutton, G.; Navon-Venezia, S.; Steinman, A. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Hospitalized Neonatal Foals: Prevalence, Risk Factors for Shedding and Association with Infection. Animals 2019, 9, 600. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI supplement M100S; CLSI: Wayne, PA, USA, 2016; pp. 74–80. [Google Scholar]
- Lepuschitz, S.; Huhulescu, S.; Hyden, P.; Springer, B.; Rattei, T.; Allerberger, F.; Mach, R.L.; Ruppitsch, W. Characterization of a Community-Acquired-MRSA USA300 Isolate from a River Sample in Austria and Whole Genome Sequence Based Comparison to a Diverse Collection of USA300 Isolates. Sci. Rep. 2018, 8, 9467. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Lepuschitz, S.; Schill, S.; Stoeger, A.; Pekard-Amenitsch, S.; Huhulescu, S.; Inreiter, N.; Hartl, R.; Kerschner, H.; Sorschag, S.; Springer, B.; et al. Whole Genome Sequencing Reveals Resemblance between ESBL-Producing and Carbapenem Resistant Klebsiella pneumoniae Isolates from Austrian Rivers and Clinical Isolates from Hospitals. Sci. Total Environ. 2019, 662, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2019, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garcìa-Fernandez, A.; Larsen, M.; Lund, O.; Villa, L.; Aarestrup, F.; Hasman, H. PlasmidFinder and PMLST: In Silico Detection and Typing of Plasmids. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. Mlplasmids: A User-Friendly Tool to Predict Plasmid- and Chromosome-Derived Sequences for Single Species. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef]
- Desvars-Larrive, A.; Ruppitsch, W.; Lepuschitz, S.; Szostak, M.P.; Spergser, J.; Feßler, A.T.; Schwarz, S.; Monecke, S.; Ehricht, R.; Walzer, C.; et al. Urban Brown Rats (Rattus Norvegicus) as Possible Source of Multidrug-Resistant Enterobacteriaceae and Meticillin-Resistant Staphylococcus Spp., Vienna, Austria, 2016 and 2017. Eurosurveillance 2019, 24. [Google Scholar] [CrossRef]
- Loncaric, I.; Beiglböck, C.; Feßler, A.T.; Posautz, A.; Rosengarten, R.; Walzer, C.; Ehricht, R.; Monecke, S.; Schwarz, S.; Spergser, J.; et al. Characterization of ESBL- and AmpC-Producing and Fluoroquinolone-Resistant Enterobacteriaceae Isolated from Mouflons (Ovis orientalis musimon) in Austria and Germany. PLoS ONE 2016, 11, e0155786. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2018; European Centre for Disease Prevention and Control: Solna kommun, Sweden, 2019. [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-Spectrum β-Lactamase-Producing and AmpC-Producing Escherichia coli from Livestock and Companion Animals, and Their Putative Impact on Public Health: A Global Perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: A threat for humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic Analysis of Diversity, Population Structure, Virulence, and Antimicrobial Resistance in Klebsiella pneumoniae, an Urgent Threat to Public Health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [PubMed]
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Ovejero, C.M.; Escudero, J.A.; Thomas-Lopez, D.; Hoefer, A.; Moyano, G.; Montero, N.; Martin-Espada, C.; Gonzalez-Zorn, B. Highly Tigecycline-Resistant Klebsiella pneumoniae Sequence TYPE 11 (ST11) & ST147 Isolates from Companion Animals. Antimicrob. Agents Chemother. 2017, 61, e02640–e02716. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Maeyama, Y.; Ohsaki, Y.; Hayashi, W.; Osaka, S.; Koide, S.; Tamai, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. Co-Resistance to Colistin and Tigecycline by Disrupting MgrB and RamR with IS Insertions in a Canine Klebsiella pneumoniae ST37 Isolate Producing SHV-12, DHA-1 and FosA3. Int. J. Antimicrob. Agents 2017, 50, 697–698. [Google Scholar] [CrossRef]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.M.; Hamidian, M.; Howden, B.P.; Löhr, I.H.; Holt, K.E. Emergence and Rapid Global Dissemination of CTX-M-15-Associated Klebsiella pneumoniae Strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef]
- Harada, K.; Shimizu, T.; Mukai, Y.; Kuwajima, K.; Sato, T.; Usui, M.; Tamura, Y.; Kimura, Y.; Miyamoto, T.; Tsuyuki, Y.; et al. Phenotypic and Molecular Characterization of Antimicrobial Resistance in Klebsiella Spp. Isolates from Companion Animals in Japan: Clonal Dissemination of Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Front. Microbiol. 2016, 7, 1021. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the Spread of Resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
1505 | 1635 | 2341b | 2668 | 2742 | 2826 | 4545 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K. michiganensis | K. oxytoca | K. pneumoniae | K. pneumoniae | K. pneumoniae | K. michiganensis | K. pneumoniae | |||||||||
ST 1 | n.a. 2 | n.a. | ST4848 | ST1228 | ST147 | n.a. | ST307 | ||||||||
CT 3 | n.a. | n.a. | CT4643 | CT4644 | ST1202 | n.a. | CT4645 | ||||||||
Origin | Lavage | Fistula | Trachea | Wound | Wound | Lavage | Feces | ||||||||
PPP 4 | PPP | PPP | PPP | PPP | PPP | PPP | |||||||||
β-lactamas | P 5 | CTX | CTX | CTX, CAZ, FOX | CTX, CAZ | CTX, CAZ, ATM | CTX | CTX, CAZ | |||||||
G 6 | blaCTX-M-17 | 0.745 | blaCTX-M-1 | 0.710 | blaCMY2 | no ppp | blaCTX-M-1 | 0.760 | blaCTX-M-15 | 0.973 | blaCTX-M-1 | 0.753 | blaCTX-M-15 | 0.976 | |
blaOXY-4-1 | 0.009 | blaOXY-2-7 | 0.003 | blaSHV | 0.003 | blaSHV-11 | 0.001 | blaOXA-1 | 0.961 | blaOXY-4-1 | 0.004 | blaOXA-1 | 0.961 | ||
blaTEM-1B | 0.891 | blaTEM-1B | 0.965 | blaTEM-1B | no ppp | blaSHV-11 | 0.001 | blaSHV-28 | 0.002 | ||||||
blaTEM-1B | 0.973 | blaTEM-1B | 0.776 | ||||||||||||
Aminoglycosides | P | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | |||||||
G | aac(3)-IId | 0.854 | aac(3)-IId | 0.909 | aac(3)-IIa | 0.956 | aac(3)-IId | 0.92 | aac(3)-IIa | 0.963 | aac(3)-IId | 0.921 | aac(3)-IIa | 0.992 | |
aadA58 | 0.993 | aadA5 | 0.955 | aph(3″)-Ib | 0.956 | aac(6′)-Ib-cr | 0.961 | aadA5 | 0.986 | aac(6′)-Ib-cr | 0.961 | ||||
aph(3″)-Ib | 0.896 | aph(3″)-Ib | 0.895 | aph(3″)-Ib | 0.973 | aph(3″)-Ib | 0.895 | aph(3″)-Ib | 0.976 | ||||||
aph(3′)-Ia | no ppp | aph(6)-Id | 0.895 | aph(6)-Id | 0.973 | aph(3′)-Ia | no ppp | aph(6)-Id | 0.976 | ||||||
aph(6)-Id | 0.896 | aph(6)-Id | 0.895 | ||||||||||||
Tetracyclines | P | TET, DOX | TET, DOX | TET, DOX | TET, DOX | TET, DOX | |||||||||
G | tet(B) | 0.690 | tet(B) | 0.545 | tet(A) | 0.029 | tet(B) | 0.709 | tet(A) | 0.946 | |||||
Chloramphenicol | P | CHL | CHL | CHL | CHL | CHL | |||||||||
G | catA1 | 0.993 | catA1 | 0.945 | catB3 | 0.961 | catA1 | 0.986 | catB3 | 0.961 | |||||
Trimethoprim/sulfamethoxazole | P | SXT | SXT | SXT | SXT | SXT | SXT | ||||||||
G | sul1 | 0.993 | sul1 | 0.955 | sul1 | 0.986 | |||||||||
sul2 | 0.896 | sul2 | 0.895 | sul2 | 0.956 | sul2 | 0.973 | sul2 | 0.895 | sul2 | 0.976 | ||||
dfrA17 | 0.993 | dfrA17 | 0.955 | dfrA14 | 0.876 | dfrA14 | 0.968 | dfrA17 | 0.986 | dfrA14 | 0.957 | ||||
Fosfomycin | P | FOS | FOS | FOS | |||||||||||
G | fosA | 0.001 | fosA | 0.003 | fosA | 0.001 | |||||||||
Fluoroquinolones | P | CIP | CIP | CIP | CIP | ||||||||||
G | oqxA | 0.002 | oqxA | 0.001 | oqxA | 0.001 | oqxA | 0.052 | oqxA | 0.001 | |||||
oqxB | 0.002 | oqxB | 0.001 | oqxB | 0.001 | oqxB | 0.001 | ||||||||
qrnS1 | 0.631 | qnrS1 | 0.760 | qnrB1 | 0.029 | qnrB1 | 0.946 | ||||||||
aac(6′)-Ib-cr | 0.961 | aac(6′)-Ib-cr | 0.961 | ||||||||||||
QRDR 9 | wild type | wild type | gyrA (Ser83-Ile) | gyrA (Ser83-Ile) | |||||||||||
QRDR | Wild type | wild type | parC (Ser80-Ile) | parC (Ser80-Ile) |
ID | Plasmid | Identity | Accession Number |
---|---|---|---|
1505 | IncFIA(HI1) | 100.0 | AF250878 |
IncFIB(pHCM2) | 96.49 | AL513384 | |
IncHI1A | 99.52 | AF250878 | |
IncHI1B(R27) | 100.0 | AF250878 | |
IncQ1 | 100.0 | M28829.1 | |
1635 | IncFIA(HI1) | 100 | AF250878 |
IncFIB(pHCM2) | 96.49 | AL513384 | |
IncHI1A | 99.52 | AF250878 | |
IncHI1B(R27) | 100 | AF250878 | |
IncQ1 | 100 | M28829.1 | |
2341b | IncI1 | 100 | AP005147 |
IncN | 99.61 | AY046276 | |
2668 | IncN | 100 | AY046276 |
IncR | 100 | DQ449578 | |
2742 | Col440I | 92.11 | CP023920.1 |
2826 | IncFIA(HI1) | 100 | AF250878 |
IncFIB(pHCM2) | 96.49 | AL513384 | |
IncHI1A | 99.52 | AF250878 | |
IncHI1B(R27) | 100 | AF250878 | |
IncQ1 | 100 | M28829 | |
4545 | IncFIB(K) | 98.93 | JN233704 |
Col440I | 94.74 | CP023920.1 |
Virulence Gene | 2341b | 2668 | 2742 | 4545 | |
---|---|---|---|---|---|
iutA | new allele | new allele | new allele | new allele | aerobactin transport |
mrkA | 2 | 2 | 6 | 12 | type 3 fimbrial gene cluster |
mrkB | 33 | 2 | 3 | 2 | |
mrkC | new allele | 2 | 2 | new allele | |
mrkD | 1 | 12 | 12 | 8 | |
mrkF | new allele | 8 | 8 | 4 | |
mrkH | 10 | 7 | 7 | 2 | |
mrkI | 7 | 15 | 15 | 4 | |
mrkJ | 19 | 12 | 12 | 2 | |
ybtA | 1 | yersiniabactin | |||
ybtE | 4 | ||||
ybtP | 4 | ||||
ybtQ | 22 | ||||
ybtS | 6 | ||||
ybtT | 1 | ||||
ybtU | 14 | ||||
ybtX | 15 | ||||
fyuA | 17 | ||||
irp1 | 44 | ||||
irp2 | 37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loncaric, I.; Cabal Rosel, A.; Szostak, M.P.; Licka, T.; Allerberger, F.; Ruppitsch, W.; Spergser, J. Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria. Animals 2020, 10, 332. https://doi.org/10.3390/ani10020332
Loncaric I, Cabal Rosel A, Szostak MP, Licka T, Allerberger F, Ruppitsch W, Spergser J. Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria. Animals. 2020; 10(2):332. https://doi.org/10.3390/ani10020332
Chicago/Turabian StyleLoncaric, Igor, Adriana Cabal Rosel, Michael P. Szostak, Theresia Licka, Franz Allerberger, Werner Ruppitsch, and Joachim Spergser. 2020. "Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria" Animals 10, no. 2: 332. https://doi.org/10.3390/ani10020332
APA StyleLoncaric, I., Cabal Rosel, A., Szostak, M. P., Licka, T., Allerberger, F., Ruppitsch, W., & Spergser, J. (2020). Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria. Animals, 10(2), 332. https://doi.org/10.3390/ani10020332