Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = cellulosome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8217 KiB  
Review
Cellulosome Systems in the Digestive Tract: Underexplored Enzymatic Machine for Lignocellulose Bioconversion
by Jiajing Qi, Mengke Zhang, Chao Chen, Yingang Feng and Jinsong Xuan
Catalysts 2025, 15(4), 387; https://doi.org/10.3390/catal15040387 - 16 Apr 2025
Viewed by 691
Abstract
Cellulosomes are sophisticated multi-enzyme complexes synthesized and secreted by anaerobic microorganisms, characterized by intricate structural components and highly organized modular assembly mechanisms. These complexes play a pivotal role in the efficient degradation of lignocellulosic biomass, significantly enhancing its bioconversion efficiency, and are thus [...] Read more.
Cellulosomes are sophisticated multi-enzyme complexes synthesized and secreted by anaerobic microorganisms, characterized by intricate structural components and highly organized modular assembly mechanisms. These complexes play a pivotal role in the efficient degradation of lignocellulosic biomass, significantly enhancing its bioconversion efficiency, and are thus regarded as invaluable enzymatic molecular machines. Cellulosomes are not only prevalent in anaerobic bacteria from soil and compost environments but are also integral to the digestive systems of herbivorous animals, primates and termites. The cellulosomes produced by digestive tract microbiota exhibit unique properties, providing novel enzymes and protein modules that are instrumental in biomass conversion and synthetic biology, thereby showcasing substantial application potential. Despite their promise, the isolation and cultivation of digestive tract microorganisms that produce cellulosomes present significant challenges. Additionally, the lack of comprehensive genetic and biochemical studies has impeded a thorough understanding of these cellulosomes, leaving them largely underexplored. This paper provides a comprehensive overview of the digestive tract cellulosome system, with a particular focus on the structural and functional attributes of cellulosomes in various animal digestive tracts. It also discusses the application prospects of digestive tract cellulosomes, highlighting their potential as a treasure in diverse fields. Full article
(This article belongs to the Special Issue Feature Review Papers in Biocatalysis and Enzyme Engineering)
Show Figures

Graphical abstract

26 pages, 2044 KiB  
Review
Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors
by Yilan Wang, Yuedong Zhang, Qiu Cui, Yingang Feng and Jinsong Xuan
Molecules 2024, 29(10), 2275; https://doi.org/10.3390/molecules29102275 - 11 May 2024
Cited by 29 | Viewed by 3986
Abstract
The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such as pretreatment, saccharification, and fermentation, [...] Read more.
The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such as pretreatment, saccharification, and fermentation, and researchers have developed a variety of biorefinery strategies to optimize the process and reduce process costs in recent years. Lignocellulosic hydrolysates are platforms that connect the saccharification process and downstream fermentation. The hydrolysate composition is closely related to biomass raw materials, the pretreatment process, and the choice of biorefining strategies, and provides not only nutrients but also possible inhibitors for downstream fermentation. In this review, we summarized the effects of each stage of lignocellulosic biorefinery on nutrients and possible inhibitors, analyzed the huge differences in nutrient retention and inhibitor generation among various biorefinery strategies, and emphasized that all steps in lignocellulose biorefinery need to be considered comprehensively to achieve maximum nutrient retention and optimal control of inhibitors at low cost, to provide a reference for the development of biomass energy and chemicals. Full article
Show Figures

Figure 1

19 pages, 5185 KiB  
Article
Improving the Synthesis Efficiency of Amino Acids by Analyzing the Key Sites of Intracellular Self-Assembly of Artificial Cellulosome
by Nan Li, Lu Yang, Xiankun Ren, Peng Du, Piwu Li, Jing Su, Jing Xiao, Junqing Wang and Ruiming Wang
Fermentation 2024, 10(5), 229; https://doi.org/10.3390/fermentation10050229 - 25 Apr 2024
Cited by 1 | Viewed by 1600
Abstract
To explore the key sites affecting the intracellular assembly of key components of cellulosomes and obtain DocA mutants independent of Ca2+, Swiss-model, GROMACS, PyMOL, and other molecular dynamics simulation software were used for modeling and static and dynamic combination analysis. Site-specific [...] Read more.
To explore the key sites affecting the intracellular assembly of key components of cellulosomes and obtain DocA mutants independent of Ca2+, Swiss-model, GROMACS, PyMOL, and other molecular dynamics simulation software were used for modeling and static and dynamic combination analysis. Site-specific mutation technology was used to mutate DocA, and Biacore was used to test the dependence of Ca2+ on the binding ability of protein DocA mutants and protein Coh, and to analyze the interaction and binding effect of mutant proteins in vitro. Forward intracellular mutant screening was performed based on semi-rational design and high throughput screening techniques. The orientation of mutations suitable for intracellular assembly was determined, and three directional mutant proteins, DocA-S1, DocA-S2, and DocA-S3, were obtained. Ca2+ independent DocA mutants were obtained gradually and their potential interaction mechanisms were analyzed. In the present study, intracellular self-assembly of key components of cellulosomes independent of Ca2+ was achieved, and DocA-S3 was applied to the assembly of key enzymes of L-lysine biosynthesis, in which DapA and DapB intracellular assembly increased L-lysine accumulation by 29.8% when compared with the control strains, providing a new strategy for improving the intracellular self-assembly of cellulosomes and amino acid fermentation efficiency. Full article
(This article belongs to the Special Issue New Insights into Amino Acid Biosynthesis)
Show Figures

Figure 1

20 pages, 1120 KiB  
Review
Taxonomy, Ecology, and Cellulolytic Properties of the Genus Bacillus and Related Genera
by Jakub Dobrzyński, Barbara Wróbel and Ewa Beata Górska
Agriculture 2023, 13(10), 1979; https://doi.org/10.3390/agriculture13101979 - 12 Oct 2023
Cited by 20 | Viewed by 4913
Abstract
Bacteria of the genus Bacillus and related genera (e.g., Paenibacillus, Alicyclobacillus or Brevibacillus) belong to the phylum Firmicutes. Taxonomically, it is a diverse group of bacteria that, to date, has not been well described phylogenetically. The group consists of aerobic and [...] Read more.
Bacteria of the genus Bacillus and related genera (e.g., Paenibacillus, Alicyclobacillus or Brevibacillus) belong to the phylum Firmicutes. Taxonomically, it is a diverse group of bacteria that, to date, has not been well described phylogenetically. The group consists of aerobic and relatively anaerobic bacteria, capable of spore-forming. Bacillus spp. and related genera are widely distributed in the environment, with a particular role in soil. Their abundance in the agricultural environment depends mainly on fertilization, but can also depend on soil cultivated methods, meaning whether the plants are grown in monoculture or rotation systems. The highest abundance of the phylum Firmicutes is usually recorded in soil fertilized with manure. Due to the great abundance of cellulose in the environment, one of the most important physiological groups among these spore-forming bacteria are cellulolytic bacteria. Three key cellulases produced by Bacillus spp. and related genera are required for complete cellulose degradation and include endoglucanases, exoglucanases, and β-glucosidases. Due to probable independent evolution, cellulases are encoded by hundreds of genes, which results in a large structural diversity of these enzymes. The microbial degradation of cellulose depends on its type and environmental conditions such as pH, temperature, and various substances including metal ions. In addition, Bacillus spp. are among a few bacteria capable of producing multi-enzymatic protein complexes called cellulosomes. In conclusion, the taxonomy of Bacillus spp. and related bacteria needs to be reorganized based on, among other things, additional genetic markers. Also, the ecology of soil bacteria of the genus Bacillus requires additions, especially in the identification of physical and chemical parameters affecting the occurrence of the group of bacteria. Finally, it is worth adding that despite many spore-forming strains well-studied for cellulolytic activity, still few are used in industry, for instance for biodegradation or bioconversion of lignocellulosic waste into biogas or biofuel. Therefore, research aimed at optimizing the cellulolytic properties of spore-forming bacteria is needed for more efficient commercialization. Full article
(This article belongs to the Special Issue Soil Management for Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 912 KiB  
Article
Engineering the Metabolic Profile of Clostridium cellulolyticum with Genomic DNA Libraries
by Benjamin G. Freedman, Parker W. Lee and Ryan S. Senger
Fermentation 2023, 9(7), 605; https://doi.org/10.3390/fermentation9070605 - 27 Jun 2023
Viewed by 1575
Abstract
Clostridium cellulolyticum H10 (ATCC 35319) has the ability to ferment cellulosic substrates into ethanol and weak acids. The growth and alcohol production rates of the wild-type organism are low and, therefore, targets of metabolic engineering. A genomic DNA expression library was produced by [...] Read more.
Clostridium cellulolyticum H10 (ATCC 35319) has the ability to ferment cellulosic substrates into ethanol and weak acids. The growth and alcohol production rates of the wild-type organism are low and, therefore, targets of metabolic engineering. A genomic DNA expression library was produced by a novel application of degenerate oligonucleotide primed PCR (DOP-PCR) and was serially enriched in C. cellulolyticum grown on cellobiose in effort to produce fast-growing and productive strains. The DNA library produced from DOP-PCR contained gene-sized DNA fragments from the C. cellulolyticum genome and from the metagenome of a stream bank soil sample. The resulting enrichment yielded a conserved phage structural protein fragment (part of Ccel_2823) from the C. cellulolyticum genome that, when overexpressed alone, enabled the organism to increase the ethanol yield by 250% compared to the plasmid control strain. The engineered strain showed a reduced production of lactate and a 250% increased yield of secreted pyruvate. Significant changes in growth rate were not seen in this engineered strain, and it is possible that the enriched protein fragment may be combined with the existing rational metabolic engineering strategies to yield further high-performing cellulolytic strains. Full article
Show Figures

Figure 1

25 pages, 829 KiB  
Review
Eight Up-Coming Biotech Tools to Combat Climate Crisis
by Werner Fuchs, Lydia Rachbauer, Simon K.-M. R. Rittmann, Günther Bochmann, Doris Ribitsch and Franziska Steger
Microorganisms 2023, 11(6), 1514; https://doi.org/10.3390/microorganisms11061514 - 7 Jun 2023
Cited by 10 | Viewed by 4134
Abstract
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline [...] Read more.
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood–Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers. Full article
(This article belongs to the Special Issue Latest Review Papers in Microbial Biotechnology Section 2023)
Show Figures

Figure 1

15 pages, 1623 KiB  
Review
Glycoside Hydrolase Family 48 Cellulase: A Key Player in Cellulolytic Bacteria for Lignocellulose Biorefinery
by Cai You, Ya-Jun Liu, Qiu Cui and Yingang Feng
Fermentation 2023, 9(3), 204; https://doi.org/10.3390/fermentation9030204 - 21 Feb 2023
Cited by 10 | Viewed by 3424
Abstract
Cellulases from glycoside hydrolase family 48 (GH48) are critical components of natural lignocellulose-degrading systems. GH48 cellulases are broadly distributed in cellulolytic microorganisms. With the development of genomics and metatranscriptomics, diverse GH48 genes have been identified, especially in the highly efficient cellulose-degrading ruminal system. [...] Read more.
Cellulases from glycoside hydrolase family 48 (GH48) are critical components of natural lignocellulose-degrading systems. GH48 cellulases are broadly distributed in cellulolytic microorganisms. With the development of genomics and metatranscriptomics, diverse GH48 genes have been identified, especially in the highly efficient cellulose-degrading ruminal system. GH48 cellulases utilize an inverting mechanism to hydrolyze cellulose in a processive mode. Although GH48 cellulases are indispensable for cellulolytic bacteria, they exhibit intrinsically low cellulolytic activity. Great efforts have been made to improve their performance. Besides, GH48 cellulases greatly synergize with the complementary endoglucanases in free cellulase systems or cellulosome systems. In this review, we summarized the studies on the diversity of GH48 cellulases, the crystal structures, the catalytic mechanism, the synergy between GH48 cellulases and endocellulases, and the strategies and progress of GH48 engineering. According to the summarized bottlenecks in GH48 research and applications, we suggest that future studies should be focused on mining and characterizing new GH48 enzymes, thoroughly understanding the progressive activity and product inhibition, engineering GH48 enzymes to improve stability, activity, and stress resistance, and designing and developing new biocatalytic system employing the synergies between GH48 and other enzymes. Full article
(This article belongs to the Special Issue Cellulose Valorization in Biorefinery)
Show Figures

Figure 1

13 pages, 5051 KiB  
Article
Enzymatic Characterization of Unused Biomass Degradation Using the Clostridium cellulovorans Cellulosome
by Mohamed Yahia Eljonaid, Hisao Tomita, Fumiyoshi Okazaki and Yutaka Tamaru
Microorganisms 2022, 10(12), 2514; https://doi.org/10.3390/microorganisms10122514 - 19 Dec 2022
Cited by 1 | Viewed by 2233
Abstract
The cellulolytic system of Clostridium cellulovorans mainly consisting of a cellulosome that synergistically collaborates with non-complexed enzymes was investigated using cellulosic biomass. The cellulosomes were isolated from the culture supernatants with shredded paper, rice straw and sugarcane bagasse using crystalline cellulose. Enzyme solutions, [...] Read more.
The cellulolytic system of Clostridium cellulovorans mainly consisting of a cellulosome that synergistically collaborates with non-complexed enzymes was investigated using cellulosic biomass. The cellulosomes were isolated from the culture supernatants with shredded paper, rice straw and sugarcane bagasse using crystalline cellulose. Enzyme solutions, including the cellulosome fractions, were analyzed by SDS-PAGE and Western blot using an anti-CbpA antibody. As a result, C. cellulovorans was able to completely degrade shredded paper for 9 days and to be continuously cultivated by the addition of new culture medium containing shredded paper, indicating, through TLC analysis, that its degradative products were glucose and cellobiose. Regarding the rice straw and sugarcane bagasse, while the degradative activity of rice straw was most active using the cellulosome in the culture supernatant of rice straw medium, that of sugarcane bagasse was most active using the cellulosome from the supernatant of cellobiose medium. Based on these results, no alcohols were found when C. acetobutylicum was cultivated in the absence of C. cellulovorans as it cannot degrade the cellulose. While 1.5 mM of ethanol was produced with C. cellulovorans cultivation, both n-butanol (1.67 mM) and ethanol (1.89 mM) were detected with the cocultivation of C. cellulovorans and C. acetobutylicum. Regarding the enzymatic activity evaluation against rice straw and sugarcane bagasse, the rice straw cellulosome fraction was the most active when compared against rice straw. Furthermore, since we attempted to choose reaction conditions more efficiently for the degradation of sugarcane bagasse, a wet jet milling device together with L-cysteine as a reducing agent was used. As a result, we found that the degradation activity was almost twice as high with 10 mM L-cysteine compared with without it. These results will provide new insights for biomass utilization. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

21 pages, 4378 KiB  
Article
Immobilization of Recombinant Endoglucanase (CelA) from Clostridium thermocellum on Modified Regenerated Cellulose Membrane
by Zi-Han Weng, Parushi Nargotra, Chia-Hung Kuo and Yung-Chuan Liu
Catalysts 2022, 12(11), 1356; https://doi.org/10.3390/catal12111356 - 3 Nov 2022
Cited by 14 | Viewed by 2745
Abstract
Cellulases are being widely employed in lignocellulosic biorefineries for the sustainable production of value-added bioproducts. However, the high production cost, sensitivity, and non-reusability of free cellulase enzymes impede their commercial applications. Enzyme immobilization seems to be a potential approach to address the aforesaid [...] Read more.
Cellulases are being widely employed in lignocellulosic biorefineries for the sustainable production of value-added bioproducts. However, the high production cost, sensitivity, and non-reusability of free cellulase enzymes impede their commercial applications. Enzyme immobilization seems to be a potential approach to address the aforesaid complications. The current study aims at the production of recombinant endoglucanase (CelA) originated from the cellulosome of Clostridium thermocellum in Escherichia coli (E. coli), followed by immobilization using modified regenerated cellulose (RC) membranes. The surface modification of RC membranes was performed in two different ways: one to generate the immobilized metal ion affinity membranes RC-EPI-IDA-Co2+ (IMAMs) for coordination coupling and another to develop aldehyde functional group membranes RC-EPI-DA-GA (AMs) for covalent bonding. For the preparation of IMAMs, cobalt ions expressed the highest affinity effect compared to other metal ions. Both enzyme-immobilized membranes exhibited better thermal stability and maintained an improved relative activity at higher temperatures (50–90 °C). In the storage analysis, 80% relative activity was retained after 15 days at 4 °C. Furthermore, the IMAM- and AM-immobilized CelA retained 63% and 53% relative activity, respectively, after being reused five times. As to the purification effect during immobilization, IMAMs showed a better purification fold of 3.19 than AMs. The IMAMs also displayed better kinetic parameters, with a higher Vmax of 15.57 U mg−1 and a lower Km of 36.14 mg mL−1, than those of AMs. The IMAMs were regenerated via treatment with stripping buffer and reloaded with enzymes and displayed almost 100% activity, the same as free enzymes, up to 5 cycles of regeneration. Full article
(This article belongs to the Special Issue Enzymes in Biomedical, Cosmetic and Food Application)
Show Figures

Figure 1

16 pages, 3294 KiB  
Article
Improving the Synthesis Efficiency of Amino Acids Such as L-Lysine by Assembling Artificial Cellulosome Elements Dockerin Protein In Vivo
by Nan Li, Le Xue, Zirui Wang, Peng Du, Piwu Li, Jing Su, Jing Xiao, Min Wang, Junqing Wang and Ruiming Wang
Fermentation 2022, 8(11), 578; https://doi.org/10.3390/fermentation8110578 - 25 Oct 2022
Cited by 5 | Viewed by 2190
Abstract
Cellulosome is a highly efficient multi-enzyme self-assembly system and is found on the extracellular surface or in the free environment of microorganisms. However, with a lack of Ca2+ in vivo, cellulosome assembly is challenging. In this study, a novel design method was [...] Read more.
Cellulosome is a highly efficient multi-enzyme self-assembly system and is found on the extracellular surface or in the free environment of microorganisms. However, with a lack of Ca2+ in vivo, cellulosome assembly is challenging. In this study, a novel design method was used to directionally modify the Ca2+-binding site, and four double-site dockerin A (DocA) mutants were obtained. At a Ca2+ concentration between 1.00 × 10−7 and 1.00 × 10−4 M, the mutant DocA-D3 had the strongest binding capacity to cohesion (Coh), which was 8.01 times that of DocA. The fluorescence signal intensity of the fusion proteins assembled using mutants was up to 1.26 × 107 in Escherichia coli, which indicated that these mutants could interact with Coh in vivo. The molecular dynamics simulation results showed that DocA-D3 could maintain a stable angle structure without Ca2+, and when applied to L-lysine fermentation, the yield was increased by 24.1%; when applied to β-alanine fermentation, the product accumulation was increased by 2.13–2.63 times. These findings lay the foundation for assembly design in cells. Full article
Show Figures

Figure 1

15 pages, 361 KiB  
Review
Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi
by María Isabel Carrillo-Díaz, Luis Alberto Miranda-Romero, Griselda Chávez-Aguilar, José Luis Zepeda-Batista, Mónica González-Reyes, Arturo César García-Casillas, Deli Nazmín Tirado-González and Gustavo Tirado-Estrada
Animals 2022, 12(7), 843; https://doi.org/10.3390/ani12070843 - 27 Mar 2022
Cited by 22 | Viewed by 3964
Abstract
The present review examines the factors and variables that should be considered to obtain, design, and evaluate EFEs that might enhance ruminal NDF degradability. Different combinations of words were introduced in Google Scholar, then scientific articles were examined and included if the reported [...] Read more.
The present review examines the factors and variables that should be considered to obtain, design, and evaluate EFEs that might enhance ruminal NDF degradability. Different combinations of words were introduced in Google Scholar, then scientific articles were examined and included if the reported factors and variables addressed the objective of this review. One-hundred-and-sixteen articles were included. The fungal strains and culture media used to grow white-rot fungi induced the production of specific isoforms of cellulases and xylanases; therefore, EFE products for ruminant feed applications should be obtained in cultures that include the high-fibrous forages used in the diets of those animals. Additionally, the temperature, pH, osmolarity conditions, and EFE synergisms and interactions with ruminal microbiota and endogenous fibrolytic enzymes should be considered. More consistent results have been observed in studies that correlate the cellulase-to-xylanase ratio with ruminant productive behavior. EFE protection (immobilization) allows researchers to obtain enzymatic products that may act under ruminal pH and temperature conditions. It is possible to generate multi-enzyme cocktails that act at different times, re-associate enzymes, and simulate natural protective structures such as cellulosomes. Some EFEs could consistently improve ruminal NDF degradability if we consider fungal cultures and ruminal environmental conditions variables, and include biotechnological tools that might be useful to design novel enzymatic products. Full article
25 pages, 5012 KiB  
Review
Clostridium thermocellum as a Promising Source of Genetic Material for Designer Cellulosomes: An Overview
by Dung Minh Ha-Tran, Trinh Thi My Nguyen and Chieh-Chen Huang
Catalysts 2021, 11(8), 996; https://doi.org/10.3390/catal11080996 - 19 Aug 2021
Cited by 7 | Viewed by 4156
Abstract
Plant biomass-based biofuels have gradually substituted for conventional energy sources thanks to their obvious advantages, such as renewability, huge quantity, wide availability, economic feasibility, and sustainability. However, to make use of the large amount of carbon sources stored in the plant cell wall, [...] Read more.
Plant biomass-based biofuels have gradually substituted for conventional energy sources thanks to their obvious advantages, such as renewability, huge quantity, wide availability, economic feasibility, and sustainability. However, to make use of the large amount of carbon sources stored in the plant cell wall, robust cellulolytic microorganisms are highly demanded to efficiently disintegrate the recalcitrant intertwined cellulose fibers to release fermentable sugars for microbial conversion. The Gram-positive, thermophilic, cellulolytic bacterium Clostridium thermocellum possesses a cellulolytic multienzyme complex termed the cellulosome, which has been widely considered to be nature’s finest cellulolytic machinery, fascinating scientists as an auspicious source of saccharolytic enzymes for biomass-based biofuel production. Owing to the supra-modular characteristics of the C. thermocellum cellulosome architecture, the cellulosomal components, including cohesin, dockerin, scaffoldin protein, and the plentiful cellulolytic and hemicellulolytic enzymes have been widely used for constructing artificial cellulosomes for basic studies and industrial applications. In addition, as the well-known microbial workhorses are naïve to biomass deconstruction, several research groups have sought to transform them from non-cellulolytic microbes into consolidated bioprocessing-enabling microbes. This review aims to update and discuss the current progress in these mentioned issues, point out their limitations, and suggest some future directions. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Metabolic Engineering)
Show Figures

Figure 1

21 pages, 1870 KiB  
Article
Utilization of Monosaccharides by Hungateiclostridium thermocellum ATCC 27405 through Adaptive Evolution
by Dung Minh Ha-Tran, Trinh Thi My Nguyen, Shou-Chen Lo and Chieh-Chen Huang
Microorganisms 2021, 9(7), 1445; https://doi.org/10.3390/microorganisms9071445 - 4 Jul 2021
Cited by 4 | Viewed by 3138
Abstract
Hungateiclostridium thermocellum ATCC 27405 is a promising bacterium for consolidated bioprocessing with a robust ability to degrade lignocellulosic biomass through a multienzyme cellulosomal complex. The bacterium uses the released cellodextrins, glucose polymers of different lengths, as its primary carbon source and energy. In [...] Read more.
Hungateiclostridium thermocellum ATCC 27405 is a promising bacterium for consolidated bioprocessing with a robust ability to degrade lignocellulosic biomass through a multienzyme cellulosomal complex. The bacterium uses the released cellodextrins, glucose polymers of different lengths, as its primary carbon source and energy. In contrast, the bacterium exhibits poor growth on monosaccharides such as fructose and glucose. This phenomenon raises many important questions concerning its glycolytic pathways and sugar transport systems. Until now, the detailed mechanisms of H. thermocellum adaptation to growth on hexose sugars have been relatively poorly explored. In this study, adaptive laboratory evolution was applied to train the bacterium in hexose sugars-based media, and genome resequencing was used to detect the genes that got mutated during adaptation period. RNA-seq data of the first culture growing on either fructose or glucose revealed that several glycolytic genes in the Embden–Mayerhof–Parnas pathway were expressed at lower levels in these cells than in cellobiose-grown cells. After seven consecutive transfer events on fructose and glucose (~42 generations for fructose-adapted cells and ~40 generations for glucose-adapted cells), several genes in the EMP glycolysis of the evolved strains increased the levels of mRNA expression, accompanied by a faster growth, a greater biomass yield, a higher ethanol titer than those in their parent strains. Genomic screening also revealed several mutation events in the genomes of the evolved strains, especially in those responsible for sugar transport and central carbon metabolism. Consequently, these genes could be applied as potential targets for further metabolic engineering to improve this bacterium for bio-industrial usage. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

17 pages, 2577 KiB  
Communication
Functionalization of Cellulose-Based Hydrogels with Bi-Functional Fusion Proteins Containing Carbohydrate-Binding Modules
by Mariana Barbosa, Hélvio Simões and Duarte Miguel F. Prazeres
Materials 2021, 14(12), 3175; https://doi.org/10.3390/ma14123175 - 9 Jun 2021
Cited by 7 | Viewed by 3227
Abstract
Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations [...] Read more.
Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others. Full article
(This article belongs to the Special Issue Research Advances in Natural Polymer-Based Hydrogels)
Show Figures

Figure 1

16 pages, 2731 KiB  
Article
Constructing an Efficient Bacillus subtilis Spore Display by Using Cohesin−Dockerin Interactions
by He Wang, Xiaomin Jiang, Yongchang Qian and Lianghong Yin
Molecules 2021, 26(4), 1186; https://doi.org/10.3390/molecules26041186 - 23 Feb 2021
Cited by 9 | Viewed by 3446
Abstract
Bacillus subtilis spore display has become a field of increasing interest in the past two decades. To improve the efficiency of B. subtilis spore display, its directed modification was performed based on the cellulosome architecture by introducing onto them divergent cohesin (Coh) modules [...] Read more.
Bacillus subtilis spore display has become a field of increasing interest in the past two decades. To improve the efficiency of B. subtilis spore display, its directed modification was performed based on the cellulosome architecture by introducing onto them divergent cohesin (Coh) modules that can specifically bind to the target enzyme bearing the matching dockerins (Doc). In this study, five different pairs of cohesins and dockerins, selected from four cellulolytic microbes, were examined for their capabilities in displaying a tetrameric enzyme β-galactosidase from Bacillus stearothermophilus IAM11001 on the surface of B. subtilis WB600 spores. Immunofluorescence microscopy, western blotting, dot blotting, and enzyme assay was applied to confirm its surface expression. All the resultant five Coh–Doc based spore display can hydrolyze o-nitrophenyl-β-D-galactopyranoside. Further, the optimized Coh–Doc based spore display exhibited the highest display efficiency. Overall, the results of current study may open new perspectives on the use of Coh–Doc interaction, which will find application in improving the efficiency of B. subtilis spore display. Full article
(This article belongs to the Special Issue Enzyme Immobilization Ⅳ)
Show Figures

Figure 1

Back to TopTop