Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,847)

Search Parameters:
Keywords = cellular activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
118 pages, 2811 KB  
Review
Insulin Resistance and Inflammation
by Evgenii Gusev, Alexey Sarapultsev and Yulia Zhuravleva
Int. J. Mol. Sci. 2026, 27(3), 1237; https://doi.org/10.3390/ijms27031237 - 26 Jan 2026
Abstract
Insulin resistance (IR) is a central driver of cardiometabolic disease and an increasingly recognized modifier of inflammatory and vascular pathology. Beyond impaired glucose homeostasis, IR emerges from chronic, metabolically induced inflammation (“meta-inflammation”) and convergent cellular stress programs that propagate across tissues and organ [...] Read more.
Insulin resistance (IR) is a central driver of cardiometabolic disease and an increasingly recognized modifier of inflammatory and vascular pathology. Beyond impaired glucose homeostasis, IR emerges from chronic, metabolically induced inflammation (“meta-inflammation”) and convergent cellular stress programs that propagate across tissues and organ systems, ultimately shaping endothelial dysfunction, atherogenesis, and cardiometabolic complications. Here, we synthesize multilevel links between insulin receptor signaling, intracellular stress modules (oxidative, endoplasmic reticulum, inflammatory, and fibrotic pathways), tissue-level dysfunction, and systemic inflammatory amplification. This work is a conceptual narrative review informed by targeted database searches and citation tracking, with explicit separation of mechanistic/experimental evidence from human observational and interventional data; causal inferences are framed primarily on mechanistic and interventional findings, whereas associative statements are reserved for observational evidence. We propose an integrative framework in which stress-response pathways are context-dependent and become maladaptive when chronically activated under nutrient excess and persistent inflammatory cues, generating self-reinforcing loops between IR and inflammation that accelerate vascular injury. This framework highlights points of convergence that can guide mechanistic prioritization and translational hypothesis testing. Full article
(This article belongs to the Section Molecular Biology)
11 pages, 876 KB  
Article
Robust Adaptive Immunity to MPXV in Older People Who Received Childhood Vaccinia Vaccination
by Chris Davis, Jianmin Zuo, Rachel Bruton, Marie Hodges, Tom Roberts, Maria Manali, Paula Olmo, Brian Willett, Paul Moss and Helen Parry
Biology 2026, 15(3), 234; https://doi.org/10.3390/biology15030234 - 26 Jan 2026
Abstract
Monkeypox virus (MPXV) is a zoonotic Orthopoxvirus responsible for Monkeypox (Mpox), historically associated with sporadic zoonotic transmission but increasingly characterised by sustained human-to-human spread. While vaccinia-based vaccination is known to confer cross-protection against MPXV, the durability of such immunity over a human lifetime [...] Read more.
Monkeypox virus (MPXV) is a zoonotic Orthopoxvirus responsible for Monkeypox (Mpox), historically associated with sporadic zoonotic transmission but increasingly characterised by sustained human-to-human spread. While vaccinia-based vaccination is known to confer cross-protection against MPXV, the durability of such immunity over a human lifetime remains incompletely characterised. Here, we assessed humoral and cellular immune responses to MPXV in octogenarians and nonagenarians vaccinated against smallpox during childhood. Twenty-three adults aged 79–94 years (median 83), who self-reported childhood vaccinia vaccination between 1925 and 1940, were recruited. MPXV-specific antibody responses were evaluated using ELISA, targeting homologous vaccinia and MPXV proteins, and live-virus neutralisation assays. Cellular immunity was assessed by IFN-γ ELISpot following stimulation with peptide pools derived from highly conserved vaccinia antigens. Responses were also obtained from younger, recently MVA–BN-vaccinated and unvaccinated control donors. All historically vaccinated participants exhibited MPXV-reactive IgG responses, with antibody binding and neutralisation levels comparable to recently vaccinated individuals. Functional neutralising activity against MPXV was detected in all donors, with ≥50% neutralisation observed in 78% of participants. Antibody concentrations correlated strongly with neutralisation capacity. T-cell responses were detectable in all historically vaccinated donors, most prominently against the major core protein A10L, although reduced magnitudes were observed in participants over 90 years of age. No MPXV-specific humoral or cellular responses were detected in unvaccinated controls. These findings demonstrate that childhood vaccinia vaccination induces durable humoral and cellular immunity against MPXV persisting for over seven decades. Historical smallpox vaccination status may therefore remain a relevant determinant of protection against Mpox. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

19 pages, 2602 KB  
Article
Laser-Enhanced Biomorphic Scaffolds Support Multipotent Stem Cell Differentiation and Angiogenesis for Vascularised Bone Regeneration
by Sandeep Kumar, Neelam Iqbal, Yahui Pan, Evangelos Daskalakis, Heather Elizabeth Owston, El Mostafa Raif, Payal Ganguly, Sarathkumar Loganathan, Peter V. Giannoudis and Animesh Jha
J. Funct. Biomater. 2026, 17(2), 62; https://doi.org/10.3390/jfb17020062 - 26 Jan 2026
Abstract
Biomorphic hydroxyapatite scaffolds derived from rattan wood (GreenBone) show significant promise in bone tissue engineering due to their inherent structural similarity to natural bone. Laser-drilled GreenBone scaffolds were studied for enhanced porosity, nutrient diffusion, cellular infiltration, and vascularisation. Patient-derived bone marrow mesenchymal stromal/stem [...] Read more.
Biomorphic hydroxyapatite scaffolds derived from rattan wood (GreenBone) show significant promise in bone tissue engineering due to their inherent structural similarity to natural bone. Laser-drilled GreenBone scaffolds were studied for enhanced porosity, nutrient diffusion, cellular infiltration, and vascularisation. Patient-derived bone marrow mesenchymal stromal/stem cells (BMMSCs) and culture-expanded mesenchymal stem cells (cMSCs) demonstrated high cell viability (>90%), considerable adhesion, and extensive cytoskeletal organisation. Trilineage differentiation confirmed the multipotency of BMMSCs, with osteogenic, adipogenic, and chondrogenic markers being successfully expressed. BMMSCs and cMSCs exhibited enhanced differentiation and gene expression profiles. At week 4, key osteogenic and angiogenic genes such as BMP2, VEGFC, RUNX2, and COL1A1 showed elevated expression, indicating improved bone formation and vascularisation activity. Markers associated with extracellular matrix (ECM) remodelling, including MMP9 and TIMP1, were also upregulated, suggesting active tissue remodelling. ELISA analysis for VEGF further demonstrated increased VEGF secretion, highlighting the scaffold’s angiogenic potential. The improved cellular response and vascular signalling emphasise the translational relevance of laser-modified GreenBone scaffolds for bone tissue engineering, particularly for critical-sized defect repair requiring rapid vascularised bone regeneration. Full article
Show Figures

Graphical abstract

24 pages, 9675 KB  
Article
N-Aryl-S-aryl-2-mercaptoacetamide Derivatives Effectively Inhibit Mushroom and Cellular Tyrosinase Activities, Melanin Production, and Pigmentation in Zebrafish Larvae: Regarding Copper Ion Chelation
by Hee Jin Jung, Hye Jin Kang, Hyeon Seo Park, Minchang Kim, Hyunju Lee, Hyunhee Ju, Yeonsoo Jeong, Yujin Park, Hae Young Chung and Hyung Ryong Moon
Molecules 2026, 31(3), 422; https://doi.org/10.3390/molecules31030422 - 26 Jan 2026
Abstract
In this study, we designed and synthesized 11 N-aryl-S-aryl-2-mercaptoacetamide derivatives as new tyrosinase inhibitors (TYRIs). Experiments with pyrocatechol violet confirmed that four derivatives showed copper-chelating abilities similar to or superior to those of well-known copper-chelating TYRIs like kojic acid (KA) [...] Read more.
In this study, we designed and synthesized 11 N-aryl-S-aryl-2-mercaptoacetamide derivatives as new tyrosinase inhibitors (TYRIs). Experiments with pyrocatechol violet confirmed that four derivatives showed copper-chelating abilities similar to or superior to those of well-known copper-chelating TYRIs like kojic acid (KA) and N-phenylthiourea. However, these four derivatives showed little or no inhibition of mushroom TYR (mTYR) activity and melanin production in B16F10 cells. Instead, derivatives with low copper chelation ability exhibited potent inhibitory effects on mTYR activity and melanin production in B16F10 cells. These findings suggest that the results of metal ion chelation by inhibitors in an enzyme-free environment do not always match those under metalloenzyme conditions because of the interactions between inhibitors and amino acid residues around the metalloenzyme active site. Owing to their favorable interactions with amino acids in the mTYR active site, two of the derivatives inhibited mTYR more effectively than KA. Probably for the same reason, three derivatives inhibited B16F10 cellular TYR more effectively than KA, and one derivative inhibited pigment production in zebrafish larvae much better than KA. This last derivative, which effectively exhibits TYR-inhibitory activity and suppresses melanin production in several species, is considered a promising compound for use as a TYRI in various fields. Full article
Show Figures

Figure 1

24 pages, 3596 KB  
Article
DNA Methylation Landscape of ReNcell Common Neural Progenitor Cell Lines Reveals Distinct Lineage Bias
by Martina Gyimesi, Duy L. B. Nguyen, Ian William Peall, Rachel Katherine Okolicsanyi and Larisa Margaret Haupt
Biology 2026, 15(3), 231; https://doi.org/10.3390/biology15030231 - 26 Jan 2026
Abstract
Neural progenitor cell (NPC) fate decisions are governed by transcriptional and signaling programmes, yet the epigenetic mechanisms stabilising early neuronal versus glial lineage trajectories remain unresolved. Here, DNA methylation landscapes in two widely used human NPC models—ReNcell VM (RVM) and ReNcell CX (RCX)—were [...] Read more.
Neural progenitor cell (NPC) fate decisions are governed by transcriptional and signaling programmes, yet the epigenetic mechanisms stabilising early neuronal versus glial lineage trajectories remain unresolved. Here, DNA methylation landscapes in two widely used human NPC models—ReNcell VM (RVM) and ReNcell CX (RCX)—were examined under several different culture conditions to define regulatory pathways shaping lineage specification. Exploratory analyses revealed that the ReNcell lines exhibited methylation similar to primary glial populations rather than neuronal subtypes, with RCX cells positioned further along a maturation trajectory and RVM cells retaining a multipotent state. RCX cultures displayed hypomethylation of neuronal markers (DCX, ENO2, MAP2), whereas RVM cultures showed consistent GFAP hypomethylation, indicative of glial or early progenitor identity. Signaling pathways regulating lineage commitment were highlighted, including TGFβ, Wnt, and Notch signaling. Within the Notch pathway, RCX cells exhibited higher gene expression of NOTCH2 and JAG ligands, consistent with active lateral induction and a developmentally advanced state. In contrast, RVM cells exhibited higher DLL1 and NOTCH1 expression, supporting lateral inhibition and cellular heterogeneity. Knockdown of syndecan-4 (SDC4) revealed opposing effects on Notch activity. Together, these findings established DNA methylation as a determinant of lineage-specific signaling in human NPCs. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

22 pages, 8737 KB  
Article
5-Aminolevulinic Acid-Mediated Photodynamic Therapy Induces Ferroptosis in Oral Leukoplakia and Oral Squamous Cell Carcinoma
by Lei Zhang, Ying Han, Qianyun Guo, Xinyi Ni and Hongwei Liu
Antioxidants 2026, 15(2), 167; https://doi.org/10.3390/antiox15020167 - 26 Jan 2026
Abstract
5-Aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) is one of the treatment modalities for oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC). However, the role of ferroptosis in ALA-PDT for OLK and OSCC remains unclear. Therefore, this study aimed to investigate whether ALA-PDT [...] Read more.
5-Aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) is one of the treatment modalities for oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC). However, the role of ferroptosis in ALA-PDT for OLK and OSCC remains unclear. Therefore, this study aimed to investigate whether ALA-PDT can induce ferroptosis in OLK and OSCC. We detected relative cellular dehydrogenase activity (CCK-8 assay), long-term proliferative viability, reactive oxygen species (ROS) generation, glutathione levels, and mitochondrial morphology after ALA-PDT. The expression of ferroptosis-related proteins was detected using Western blot. A tongue OSCC model was established in male BalB/c nude mice, and then ALA-PDT was performed. Immunohistochemical staining of Ki67, GPX4 and FTH1 was conducted to evaluate the effect of ALA-PDT. Subsequently, OLK and OSCC cells were pre-treated with ferrostatin-1 (Fer-1) before ALA-PDT. Relative cellular dehydrogenase activity, ROS generation, lipid peroxidation, Fe2+ levels, and ferroptosis-related protein expression were measured. Finally, OLK and OSCC cells were treated with a combination of ALA-PDT and erastin, and mitochondrial function was evaluated. In vitro study showed that ALA-PDT increased ROS generation and decreased GSH/GSSG ratio in OLK and OSCC cells. After ALA-PDT, mitochondrial morphology exhibited typical characteristics of ferroptosis. In vivo experiments showed that immunohistochemistry (IHC) scores of Ki67, GPX4 and FTH1 in the tissues decreased after ALA-PDT. Moreover, pre-treatment with Fer-1 could reverse ROS levels, lipid peroxidation and intracellular Fe2+ accumulation in OLK and OSCC cells after ALA-PDT. Additionally, Fer-1 pre-treatment reversed the changes in protein expression induced by ALA-PDT. The combination of ALA-PDT and erastin significantly reduced mitochondrial O2 production and decreased mitochondrial membrane potential. Above all, ALA-PDT can induce ferroptosis in OLK and OSCC. The use of ferroptosis agonists may enhance the therapeutic efficacy of ALA-PDT for OLK and OSCC. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

30 pages, 1212 KB  
Review
Fabry Disease: A Focus on the Role of Oxidative Stress
by Julia Rydzek, Adrian Muzyka, Krzysztof Majcherczyk, Julia Soczyńska, Wiktor Gawełczyk, Mateusz Żołyniak and Sławomir Woźniak
Antioxidants 2026, 15(2), 168; https://doi.org/10.3390/antiox15020168 - 26 Jan 2026
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to α-galactosidase A deficiency, accumulation of globotriaosylceramide (Gb3), and progressive multiorgan involvement. Increasing evidence indicates that oxidative stress plays a central role in disease pathogenesis. This review [...] Read more.
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to α-galactosidase A deficiency, accumulation of globotriaosylceramide (Gb3), and progressive multiorgan involvement. Increasing evidence indicates that oxidative stress plays a central role in disease pathogenesis. This review aims to synthesize current knowledge on the molecular mechanisms underlying oxidative stress, the relevance of oxidative damage biomarkers, and potential therapeutic implications. A comprehensive literature search was conducted in PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar using terms related to Fabry disease, Gb3 metabolism, mitochondrial and endothelial dysfunction, inflammatory signaling, and oxidative stress markers. Clinical, experimental, and translational studies were included. Available data demonstrate that Gb3 accumulation disrupts mitochondrial function and activates NADPH oxidase, NF-κB, and MAPK signaling pathways, resulting in excessive production of reactive oxygen species. These processes contribute to cellular injury, particularly within the cardiovascular, renal, and nervous systems. Biomarkers such as malondialdehyde, 8-hydroxy-2′-deoxyguanosine, glutathione redox status, and antioxidant enzyme activities appear useful for assessing oxidative burden and monitoring therapeutic responses. Overall, current evidence underscores the pivotal role of oxidative stress in the progression of Fabry disease and highlights the need for further research into targeted antioxidant and disease-modifying therapeutic strategies. Full article
Show Figures

Figure 1

27 pages, 1813 KB  
Review
Sweet Surprises: Decoding Tumor-Associated Glycosylation in Cancer Progression and Therapeutic Potential
by Eileena F. Giurini, Sam G. Pappas and Kajal H. Gupta
Cells 2026, 15(3), 233; https://doi.org/10.3390/cells15030233 - 26 Jan 2026
Abstract
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant [...] Read more.
Tumor-associated glycosylation is a defining hallmark of cancer, exerting profound effects on multiple aspects of tumor biology. This phenomenon arises from the central role of glycosylation in a wide range of cellular processes and its inherently diverse structural complexity. In cancer cells, aberrant glycosylation often results in the modification of glycoconjugate structures, leading to alterations in cell surface architecture that disrupt cellular homeostasis and signaling pathways. These changes can enhance tumor cell proliferation, invasion, and metastasis by modulating cell adhesion, receptor activation, and intracellular communication. Beyond its direct impact on cancer cells, tumor-associated glycosylation plays a pivotal role in shaping the tumor microenvironment. Aberrant glycan structures influence immune cell infiltration by altering antigen presentation and immune checkpoint interactions, contributing to immune evasion. Additionally, these modifications regulate angiogenesis by affecting endothelial cell function and promoting the formation of aberrant vasculature, which supports tumor growth and metastasis. Glycosylation also mediates tumor–stroma interactions, influencing extracellular matrix remodeling and fibroblast activation, further enhancing cancer progression. This interplay between cancer-associated glycan modifications and their functional roles in tumorigenesis presents a promising therapeutic approach. Unlike conventional treatments, glycan-targeting therapies confer high tumor specificity, operate independently of canonical immune checkpoint targets, and help mitigate immune cell exhaustion. This review explores commonly dysregulated glycan motifs implicated in tumorigenesis and delves into their mechanistic contributions to cancer pathogenesis. We then highlight emerging opportunities for therapeutic intervention, including the development of glycan-targeted therapies and biomarker-driven strategies for cancer diagnosis and treatment. We also outline where glycan-targeted agents (e.g., desialylating biologics, glycomimetics, and anti-glycan mAbs) can complement checkpoint blockade and potentially overcome immune escape. Full article
Show Figures

Figure 1

40 pages, 4399 KB  
Review
When Barriers Break: Tight Junction Regulation and Dynamic Alterations of Barrier Integrity in Neurological Injury
by Kayli N. Colpitts and James W. Grau
Cells 2026, 15(3), 232; https://doi.org/10.3390/cells15030232 - 26 Jan 2026
Abstract
The blood–brain barrier and blood–spinal cord barrier (BBB/BSCB) are essential protective components for the healthy functioning of the central nervous system (CNS). While these barriers protect the CNS from peripheral factors, such as immune cells and blood products, they can become disrupted in [...] Read more.
The blood–brain barrier and blood–spinal cord barrier (BBB/BSCB) are essential protective components for the healthy functioning of the central nervous system (CNS). While these barriers protect the CNS from peripheral factors, such as immune cells and blood products, they can become disrupted in pathological conditions and injury. The neurovascular unit (NVU) is composed of endothelial cells (ECs), pericytes, astrocytes, microglia, and neurons, all of which contribute to proper function and the maintenance of the BBB/BSCB. Tight junctions (TJs) unite cellular components and are modulated by both intrinsic and extrinsic factors. Systemic processes, such as pain (nociceptive activity), inflammation, and blood hemostasis, can impact BBB/BSCB function, often leading to a disrupted barrier and increased peripheral infiltration. This, in turn, can increase neuroinflammation and drive microglia activation, progressive hemorrhagic necrosis (PHN), and matrix metalloproteinase (MMP) activity. Targeting these processes and mitigating the deleterious effects of BBB/BSCB breakdown represents a key therapeutic target after neural injury and other pathological conditions. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

18 pages, 3896 KB  
Article
Untargeted Serum Proteomics in the Fontan Circulation Reveals Three Distinct Molecular Signatures of Fontan Physiology with CYB5R3 Among Key Proteins
by Alexander Blaha, David Renaud, Fatima Ageed, Bettina Sarg, Klaus Faserl, Alexander Kirchmair, Dietmar Rieder, Isabel Mihajlovic, Nele Ströbel, Kai Thorsten Laser and Miriam Michel
Int. J. Mol. Sci. 2026, 27(3), 1220; https://doi.org/10.3390/ijms27031220 - 26 Jan 2026
Abstract
The total cavopulmonary anastomosis (Fontan procedure), a palliative procedure for single-ventricle congenital heart disease, improves survival but is associated with progressive multiorgan complications and high long-term morbidity. Prior blood-based proteomic studies in adults have been limited to targeted antibody-based panels or focused on [...] Read more.
The total cavopulmonary anastomosis (Fontan procedure), a palliative procedure for single-ventricle congenital heart disease, improves survival but is associated with progressive multiorgan complications and high long-term morbidity. Prior blood-based proteomic studies in adults have been limited to targeted antibody-based panels or focused on methodological comparisons. Systemic molecular alterations in younger, clinically heterogeneous patients, particularly in untargeted pathways, remain incompletely characterized. Serum samples from 48 Fontan patients and 48 age- and sex-matched healthy controls were analyzed using mass spectrometry with TMT labeling. 2228 proteins were quantified, of which 124 were significantly differentially abundant (fold change > 1.5 or <0.67, FDR-adjusted p < 0.05). Network analysis identified three major functional clusters: extracellular matrix (ECM) organization (predominantly increased), actin cytoskeleton organization, and platelet-related pathways (both predominantly decreased). Stratified analyses showed reduced ECM protein abundance in high-risk patients, suggesting a shift from active remodeling toward a more established fibrotic state, and uniquely elevated cytochrome b5 reductase 3 (CYB5R3), implicating altered redox homeostasis, nitric oxide metabolism, and cellular aging. Overall, our findings extend prior targeted analyses, reveal potential biomarkers such as CYB5R3 and underscore the complexity of the Fontan circulation, with implications for risk stratification and therapeutic targeting. Full article
(This article belongs to the Special Issue Omics Technologies in Molecular Biology)
Show Figures

Figure 1

18 pages, 4493 KB  
Article
Integrated Single-Cell and Spatial Transcriptomics Coupled with Machine Learning Uncovers MORF4L1 as a Critical Epigenetic Mediator of Radiotherapy Resistance in Colorectal Cancer Liver Metastasis
by Yuanyuan Zhang, Xiaoli Wang, Haitao Liu, Yan Xiang and Le Yu
Biomedicines 2026, 14(2), 273; https://doi.org/10.3390/biomedicines14020273 - 26 Jan 2026
Abstract
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop [...] Read more.
Background and Objective: Colorectal cancer (CRC) liver metastasis (CRLM) represents a major clinical challenge, and acquired resistance to radiotherapy (RT) significantly limits therapeutic efficacy. A deep and comprehensive understanding of the cellular and molecular mechanisms driving RT resistance is urgently required to develop effective combination strategies. Here, we aimed to dissect the dynamic cellular landscape of the tumor microenvironment (TME) and identify key epigenetic regulators mediating radioresistance in CRLM by integrating cutting-edge single-cell and spatial omics technologies. Methods and Results: We performed integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) on matched pre- and post-radiotherapy tumor tissues collected from three distinct CRLM patients. Employing a robust machine-learning framework on the multi-omics data, we successfully identified MORF4L1 (Mortality Factor 4 Like 1), an epigenetic reader, as a critical epigenetic mediator of acquired radioresistance. High-resolution scRNA-seq analysis of the tumor cell compartment revealed that the MORF4L1-high subpopulation exhibited significant enrichment in DNA damage repair (DDR) pathways, heightened activity of multiple pro-survival metabolic pathways, and robust signatures of immune evasion. Pseudotime trajectory analysis further confirmed that RT exposure drives tumor cells toward a highly resistant state, marked by a distinct increase in MORF4L1 expression. Furthermore, cell–cell communication inference demonstrated a pronounced, systemic upregulation of various immunosuppressive signaling axes within the TME following RT. Crucially, high-resolution ST confirmed these molecular and cellular interactions in their native context, revealing a significant spatial co-localization of MORF4L1-expressing tumor foci with multiple immunosuppressive immune cell types, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), thereby underscoring its role in TME-mediated resistance. Conclusions: Our comprehensive spatial and single-cell profiling establishes MORF4L1 as a pivotal epigenetic regulator underlying acquired radioresistance in CRLM. These findings provide a compelling mechanistic rationale for combining radiotherapy with the targeted inhibition of MORF4L1, presenting a promising new therapeutic avenue to overcome treatment failure and improve patient outcomes in CRLM. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancer Progression)
Show Figures

Figure 1

15 pages, 1682 KB  
Review
The Role of Non-LTR Retrotransposons in Sterile Inflammation: Mechanisms and Therapeutic Potential
by Hua Yang, Xin Chen, Tamara Saksida, Melita Vidaković, Sizhuo Chen, Vuk Savkovic, Mingyue Chen, Shaobin Wang and Zhenhuan Zhao
Biomedicines 2026, 14(2), 272; https://doi.org/10.3390/biomedicines14020272 - 26 Jan 2026
Abstract
Non-long terminal repeat (Non-LTR) retrotransposons are mobile genetic elements that replicate through a “copy-and-paste” mechanism, enabling their expansion within the genome. Aberrant activation of these elements can induce genomic instability, elicit cellular stress responses, and activate inflammasome signaling, leading to tissue injury and [...] Read more.
Non-long terminal repeat (Non-LTR) retrotransposons are mobile genetic elements that replicate through a “copy-and-paste” mechanism, enabling their expansion within the genome. Aberrant activation of these elements can induce genomic instability, elicit cellular stress responses, and activate inflammasome signaling, leading to tissue injury and disease. The central process of sterile inflammation involves the release and recognition of damage-associated molecular patterns (DAMPs), endogenous molecules that initiate inflammatory responses and form a common basis for many sterile inflammatory disorders. Recent studies have identified non-LTR retrotransposons as key endogenous triggers of DAMP-like signaling that drive sterile inflammation in both neuronal and non-neuronal tissues, contributing to the development of neurodegenerative and other chronic inflammatory diseases. In this review, we summarize recent advances in understanding how non-LTR retrotransposons, particularly LINE and SINE elements, influence sterile inflammation and disease pathogenesis. We highlight how their mobilization reshapes genomic architecture and gene regulation, and how the resulting signaling cascades promote chronic inflammation, immune dysregulation, and tissue injury. We also discuss emerging therapeutic strategies aimed at suppressing retrotransposon activity or interrupting downstream inflammatory signaling for treating sterile inflammation-related diseases. Full article
Show Figures

Figure 1

18 pages, 1153 KB  
Article
The Glutamine-α-Ketoglutarate Metabolic Axis Controls Vascular Smooth Muscle Cell Function
by Kelly J. Peyton, Xiao-Ming Liu, Giovanna L. Durante and William Durante
Cells 2026, 15(3), 230; https://doi.org/10.3390/cells15030230 - 26 Jan 2026
Abstract
Glutamine is a known regulator of vascular smooth muscle cell (VSMC) function, but the molecular pathways underlying this response remain incompletely understood. This study investigated how glutamine metabolism influences VSMC behavior and identified the responsible enzymes and metabolites. Glutamine deprivation markedly reduced VSMC [...] Read more.
Glutamine is a known regulator of vascular smooth muscle cell (VSMC) function, but the molecular pathways underlying this response remain incompletely understood. This study investigated how glutamine metabolism influences VSMC behavior and identified the responsible enzymes and metabolites. Glutamine deprivation markedly reduced VSMC proliferation, migration, and collagen synthesis, while modestly decreasing viability. Pharmacological inhibition of glutaminase-1 (GLS1) or aminotransferases (AT) similarly suppressed these cellular functions, whereas inhibiting glutamate dehydrogenase 1 (GLUD1) had no effect. Metabolite analysis revealed that glutamine deprivation or AT inhibition, but not GLUD1 inhibition, reduced intracellular α-ketoglutarate (αKG) concentrations, establishing AT as the primary enzyme converting glutamine-derived glutamate to αKG. To identify which metabolite drives VSMC responses, glutamine-starved cells were supplemented with various glutamine-derived molecules. The cell-permeable αKG analog dimethyl-αKG significantly restored VSMC proliferation, migration, collagen synthesis, and survival, while ammonia only enhanced viability, demonstrating αKG’s primary role in mediating glutamine-dependent functions. These findings establish that glutamine metabolism via the GLS1-AT-αKG pathway is a critical driver of VSMC activation and survival. Targeting this glutamine-αKG metabolic axis through GLS1 inhibition, AT blockade, or downstream αKG disruption offers a compelling therapeutic strategy for ameliorating fibroproliferative vascular diseases, including atherosclerosis, post-angioplasty restenosis, and pulmonary hypertension. Full article
(This article belongs to the Special Issue New Insights into Vascular Biology in Health and Disease)
Show Figures

Figure 1

17 pages, 2403 KB  
Article
P-Hydroxybenzaldehyde from Gastrodia elata Blume Reduces Hydroxyurea-Induced Cellular Senescent Phenotypes in Human SH-SY5Y Cells via Enhancing Autophagy
by Shuhui Qu, Daijiao Tang, Lingxuan Fan, Yuan Dai, Hai-Jing Zhong, Wei Cai and Cheong-Meng Chong
Pharmaceuticals 2026, 19(2), 207; https://doi.org/10.3390/ph19020207 - 25 Jan 2026
Abstract
Background/Objectives: The rhizome of Gastrodia elata Blume (Tianma) is a functional food with medicinal value in China, used to improve the health of the central nervous system and reported to exhibit anti-cellular senescent activity. P-hydroxybenzaldehyde (P-HBA) is a key aromatic compound isolated [...] Read more.
Background/Objectives: The rhizome of Gastrodia elata Blume (Tianma) is a functional food with medicinal value in China, used to improve the health of the central nervous system and reported to exhibit anti-cellular senescent activity. P-hydroxybenzaldehyde (P-HBA) is a key aromatic compound isolated from Tianma; however, its potential to mitigate cellular senescence remains unclear. Methods: We employed ultra-performance liquid chromatography-mass spectrometry to identify the chemical characterization of Tianma extract. Cell viability assay, senescence-associated-β-galactosidase (SA-β-Gal) assay, and immunofluorescence staining and autophagy analysis were used to evaluate the anti-senescent activity of P-HBA and other Tianma components. Results: Our findings demonstrate that Tianma methanol extract (TME) and P-HBA significantly reduce cellular senescent inducer hydroxyurea (HU)-induced DNA damage, SA-β-Gal activity increase, and autophagic dysfunction in human SH-SY5Y cells. Notably, an autophagy inhibitor, chloroquine, can reduce anti-cellular senescent activity of P-HBA. Conclusions: These results suggest that P-HBA exhibits the effect of reducing cellular senescent phenotypes, and its effect is achieved by enhancing autophagy. Full article
Show Figures

Figure 1

34 pages, 3383 KB  
Systematic Review
Cellular Mechanisms Underlying Endothelial and Histopathological Alterations Induced by Cerebral Angiography
by Zülfikar Özgür Ertuğrul, Mehmet Cudi Tuncer and Mehmet Uğur Karabat
J. Clin. Med. 2026, 15(3), 974; https://doi.org/10.3390/jcm15030974 (registering DOI) - 25 Jan 2026
Abstract
Background/Objectives: Cerebral angiography is a cornerstone diagnostic and therapeutic procedure for cerebrovascular diseases; however, its potential effects on vascular integrity and cellular homeostasis remain incompletely elucidated. This systematic review aims to comprehensively evaluate endothelial and histopathological alterations induced by cerebral angiographic procedures, [...] Read more.
Background/Objectives: Cerebral angiography is a cornerstone diagnostic and therapeutic procedure for cerebrovascular diseases; however, its potential effects on vascular integrity and cellular homeostasis remain incompletely elucidated. This systematic review aims to comprehensively evaluate endothelial and histopathological alterations induced by cerebral angiographic procedures, with particular emphasis on oxidative stress, inflammation, endothelial dysfunction, and blood–brain barrier disruption. Methods: This systematic review was conducted in accordance with the PRISMA 2020 guidelines. PubMed, Scopus, and Web of Science databases were systematically searched for studies published between 1981 and 2025 using predefined keywords related to cerebral angiography, endothelial injury, oxidative stress, inflammation, and histopathological changes. A total of 1142 records were identified, and 216 duplicates were removed. Following title and abstract screening, 312 full-text articles were assessed for eligibility, of which 112 were excluded due to irrelevance or insufficient endothelial or histopathological data. Ultimately, 200 studies were included in the qualitative synthesis. The literature identification, screening, and selection process are summarized in the manuscript. The review protocol was not prospectively registered. Results: The included studies demonstrated that cerebral angiographic procedures induce endothelial and microvascular alterations through both mechanical and contrast-mediated mechanisms. Iodinated contrast agents were consistently associated with increased reactive oxygen species production, reduced endothelial nitric oxide bioavailability, mitochondrial dysfunction, and activation of pro-inflammatory signaling pathways, including nuclear factor kappa B (NF-κB). Histopathological findings revealed endothelial swelling, vacuolization, apoptosis, microthrombus formation, inflammatory cell infiltration, and disruption of endothelial junctions, leading to increased vascular permeability and blood–brain barrier impairment. Mechanical factors related to catheter manipulation and high-pressure contrast injection further exacerbated endothelial injury by altering shear stress and promoting leukocyte adhesion. The severity of endothelial damage and inflammatory responses was consistently greater in patients with comorbid conditions such as diabetes mellitus, hypertension, and atherosclerotic disease. Conclusions: Cerebral angiography may induce endothelial dysfunction and histopathological vascular injury predominantly through oxidative and inflammatory mechanisms. Optimization of contrast agent selection, refinement of procedural techniques, and implementation of endothelial-protective strategies may mitigate vascular injury and improve procedural safety. Further translational and clinical studies are warranted to identify biomarkers and protective interventions targeting angiography-induced endothelial damage. Full article
Show Figures

Figure 1

Back to TopTop