Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = cell-intrinsic forces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16099 KB  
Article
Embroidered Silk Fibroin Scaffolds for ACL Tissue Engineering
by Yasir Majeed, Clemens Gögele, Cindy Elschner, Christian Werner, Tobias Braun, Judith Hahn, Ricardo Bernhardt, Udo Krause, Bernd Minnich and Gundula Schulze-Tanzil
Int. J. Mol. Sci. 2026, 27(1), 137; https://doi.org/10.3390/ijms27010137 - 22 Dec 2025
Viewed by 68
Abstract
Anterior cruciate ligament (ACL) rupture causes joint instability and increases the risk of osteoarthritis due to the ligament’s limited healing capacity. Silk, particularly from Bombyx mori, combines high cytocompatibility with robust biomechanical properties. Its main components are fibroin and sericin, with the [...] Read more.
Anterior cruciate ligament (ACL) rupture causes joint instability and increases the risk of osteoarthritis due to the ligament’s limited healing capacity. Silk, particularly from Bombyx mori, combines high cytocompatibility with robust biomechanical properties. Its main components are fibroin and sericin, with the latter usually being removed to reduce immunogenicity and improve biocompatibility. Silk threads were processed either as raw silk (designated as “untreated”) or subjected to a patented degumming procedure (DE102021118652A1) to obtain purified silk. Both variants were used alone or in combination with poly(L-lactic acid-co-caprolactone) (P(LA-CL)) fibers, yielding four scaffold groups: untreated silk, purified silk, untreated silk/P(LA-CL), and purified silk/P(LA-CL). Three-layer scaffolds were fabricated using a zigzag embroidery pattern. Structural analysis revealed scaffold porosity of ≈38% for silk, ≈46% for purified silk, and up to ≈70% for scaffolds containing P(LA-CL). Uniaxial tensile testing showed that purified silk scaffolds achieved the highest maximum force at break (≈684 N), whereas elongation at maximum force was limited in the hybrid scaffolds—silk/P(LA-CL) ≈ 28% and p-silk/P(LA-CL) ≈ 32%—despite the high intrinsic extensibility of P(LA-CL). All scaffolds supported cell adhesion and showed no cytotoxicity. P-silk and p-silk/P(LA-CL) scaffolds exhibited the highest fibroblast adherence and pronounced paxillin expression, indicating strong cell–material interactions. Gene expression of ligament-related ECM components and connexin 43 was maintained across all groups. These results demonstrate that embroidered silk fibroin scaffolds provide a reproducible architecture with tunable porosity and mechanical properties, supporting fibroblast colonization and ligament-specific ECM expression. Such scaffolds represent promising candidates for ACL tissue engineering and future graft development. Full article
(This article belongs to the Special Issue Ligament/Tendon and Cartilage Tissue Engineering and Reconstruction)
Show Figures

Graphical abstract

19 pages, 5058 KB  
Article
Investigation of Viscoelastic Properties of Macrophage Membrane–Cytoskeleton Induced by Gold Nanorods in Leishmania Infection
by Maria L. B. Pertence, Marina V. Guedes, Rosimeire C. Barcelos, Jeronimo N. Rugani, Rodrigo P. Soares, Joyce L. V. Cruz, Alessandra M. de Sousa, Rubens L. do Monte-Neto, Livia G. Siman, Anna C. P. Lage and Ubirajara Agero
Nanomaterials 2025, 15(17), 1373; https://doi.org/10.3390/nano15171373 - 5 Sep 2025
Viewed by 1057
Abstract
Cell membranes and the cytoskeleton play crucial roles in the regulation of cellular responses by mediating mechanical forces and physical stimuli from the microenvironment through their viscoelastic properties. Investigating these properties provides valuable insights into disease mechanisms and therapeutic strategies. Gold nanorods (GNRs), [...] Read more.
Cell membranes and the cytoskeleton play crucial roles in the regulation of cellular responses by mediating mechanical forces and physical stimuli from the microenvironment through their viscoelastic properties. Investigating these properties provides valuable insights into disease mechanisms and therapeutic strategies. Gold nanorods (GNRs), especially under irradiation, exhibit lethal effects against Leishmania parasites through plasmonic photothermal conversion. In this study, we focus on evaluating the effects of non-irradiated GNRs on macrophage properties to better understand their intrinsic interactions with cells and support the development of future phototherapy applications. Here, defocusing microscopy (DM), a quantitative phase microscopy technique, was used to analyze membrane fluctuations in macrophages (Ms) exposed to GNRs (average length of 43±8 nm and diameter of 20±4 nm) and infected with Leishmania amazonensis. By quantifying membrane–cytoskeleton fluctuation from defocused images, we extracted viscoelastic parameters, including bending modulus (kc) and viscosity (η), to characterize membrane behavior in detail. Our results show that infection increases both kc and η, while treatment at IC50 reduces infection and selectively increases kc without affecting η. In healthy macrophages, exposure to GNRs resulted in a reduction in both parameters, indicative of increased membrane fluidity and cytoskeletal rearrangement. These findings provide new insights into the biomechanical effects of GNRs on macrophages and may enlighten the design of future phototherapeutic approaches. Full article
(This article belongs to the Special Issue The Study of the Effects of Nanoparticles on Human Cells)
Show Figures

Graphical abstract

20 pages, 3966 KB  
Review
Mechanotransduction: A Master Regulator of Alveolar Cell Fate Determination
by Kusum Devi and Kalpaj R. Parekh
Bioengineering 2025, 12(7), 760; https://doi.org/10.3390/bioengineering12070760 - 14 Jul 2025
Viewed by 2530
Abstract
Mechanotransduction plays an essential role in the fate determination of alveolar cells within the pulmonary system by translating mechanical forces into intricate biochemical signals. This process exclusively governs differentiation, phenotypic stability, and maintenance of alveolar epithelial cell subtypes, primarily the alveolar AT1/AT2 cells. [...] Read more.
Mechanotransduction plays an essential role in the fate determination of alveolar cells within the pulmonary system by translating mechanical forces into intricate biochemical signals. This process exclusively governs differentiation, phenotypic stability, and maintenance of alveolar epithelial cell subtypes, primarily the alveolar AT1/AT2 cells. Perturbed mechanical tension proportionally impacts alveolar cell phenotypic identity and their functional characteristics. The fundamental influence of respiratory mechanics on alveolar cell lineage commitment and sustenance is undeniable. AT1 cells are recognized as principal mechanosensors within the alveolus, directly perceiving and responding to mechanical forces imposed by respiration through cell–matrix interactions. These mechanical forces instigate a profound reorganization of the actin cytoskeleton within cells, indispensable for signal transduction and perpetuation of their differentiated phenotype, orchestrated by integrins and cell adhesion molecule-mediated signaling. The dysregulated mechanotransduction in the pulmonary system intrinsically contributes to the etiology and progression of various diseases, exemplified by pulmonary fibrosis. This review systematically elucidates the profound impact of mechanotransduction on alveolar cell differentiation and fate sustenance and underscores how its dysregulation contributes to the initiation and perpetuation of lung diseases. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

16 pages, 3791 KB  
Article
Spindle Orientation Regulation Is Governed by Redundant Cortical Mechanosensing and Shape-Sensing Mechanisms
by Rania Hadjisavva and Paris A. Skourides
Int. J. Mol. Sci. 2025, 26(12), 5730; https://doi.org/10.3390/ijms26125730 - 15 Jun 2025
Viewed by 863
Abstract
Spindle orientation (SO) plays a critical role in tissue morphogenesis, homeostasis, and tumorigenesis by ensuring accurate division plane positioning in response to intrinsic and extrinsic cues. While SO has been extensively linked to cell shape sensing and cortical forces, the interplay between shape- [...] Read more.
Spindle orientation (SO) plays a critical role in tissue morphogenesis, homeostasis, and tumorigenesis by ensuring accurate division plane positioning in response to intrinsic and extrinsic cues. While SO has been extensively linked to cell shape sensing and cortical forces, the interplay between shape- and force-sensing mechanisms remains poorly understood. Here, we reveal that SO is governed by two parallel mechanisms that ensure redundancy and adaptability in diverse cellular environments. Using live-cell imaging of cultured cells, we demonstrate that the long prometaphase axis (LPA) is a superior predictor of SO compared to the long interphase axis, reflecting adhesive geometry and force distribution efficiently at prometaphase. Importantly, we uncover a pivotal role for focal adhesion kinase (FAK) in mediating cortical mechanosensing to regulate SO in cells undergoing complete metaphase rounding. We show that in cells with complete metaphase rounding, FAK-dependent force sensing aligns the spindle with the major force vector, ensuring accurate division. Conversely, in cells retaining shape anisotropy during mitosis, a FAK-independent shape-sensing mechanism drives SO. These findings highlight a dual regulatory system for SO, where shape sensing and force sensing operate in parallel to maintain division plane fidelity, shedding light on the mechanisms that enable cells to adapt to diverse physical and mechanical environments. Full article
(This article belongs to the Special Issue Cell Division: A Focus on Molecular Mechanisms)
Show Figures

Figure 1

28 pages, 6764 KB  
Article
Multi-Modal Analysis of Satellite Cells Reveals Early Impairments at Pre-Contractile Stages of Myogenesis in Duchenne Muscular Dystrophy
by Sophie Franzmeier, Shounak Chakraborty, Armina Mortazavi, Jan B. Stöckl, Jianfei Jiang, Nicole Pfarr, Benedikt Sabass, Thomas Fröhlich, Clara Kaufhold, Michael Stirm, Eckhard Wolf, Jürgen Schlegel and Kaspar Matiasek
Cells 2025, 14(12), 892; https://doi.org/10.3390/cells14120892 - 13 Jun 2025
Cited by 1 | Viewed by 2051
Abstract
Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis [...] Read more.
Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis rather than resulting from the pathologic environment. In this study, we isolated SCs from a porcine DMD model and age-matched wild-type (WT) piglets for comprehensive analysis. Using immunofluorescence, differentiation assays, traction force microscopy (TFM), RNA-seq, and label-free proteomic measurements, SCs behavior was characterized, and molecular changes were investigated. TFM revealed significantly higher average traction forces in DMD than WT SCs (90.4 ± 10.5 Pa vs. 66.9 ± 8.9 Pa; p = 0.0018). We identified 1390 differentially expressed genes and 1261 proteins with altered abundance in DMD vs. WT SCs. Dysregulated pathways uncovered by gene ontology (GO) enrichment analysis included sarcomere organization, focal adhesion, and response to hypoxia. Multi-omics factor analysis (MOFA) integrating transcriptomic and proteomic data, identified five factors accounting for the observed variance with an overall higher contribution of the transcriptomic data. Our findings suggest that SC impairments result from their inherent genetic abnormality rather than from environmental influences. The observed biological changes are intrinsic and not reactive to the pathological surrounding of DMD muscle. Full article
(This article belongs to the Special Issue Skeletal Muscle: Structure, Physiology and Diseases)
Show Figures

Figure 1

19 pages, 40454 KB  
Article
Shining a Light on Carbon-Reinforced Polymers: Mg/MgO and TiO2 Nanomodifications for Enhanced Optical Performance
by Lukas Haiden, Michael Feuchter, Andreas J. Brunner, Michel Barbezat, Amol Pansare, Bharath Ravindran, Velislava Terziyska and Gerald Pinter
J. Compos. Sci. 2025, 9(4), 187; https://doi.org/10.3390/jcs9040187 - 12 Apr 2025
Cited by 2 | Viewed by 980
Abstract
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition [...] Read more.
This study examines the intrinsic optical enhancements of carbon fiber-reinforced polymers (CFRPs) achieved through the integration of magnesium oxide (MgO) nanoparticles, as well as Mg/MgO and titanium dioxide (TiO2) thin films onto carbon fibers. Integration was performed by quasi-continuous electrophoretic deposition (EPD) and physical vapor deposition (PVD), respectively. Employing a customized electrophoretic cell, EPD facilitated uniform MgO nanoparticle deposition onto unsized carbon fibers, ensuring stable nanoparticle dispersion and precise fiber coating. As a result, the fibers exhibited increased ultraviolet (UV) reflectance, largely attributed to the optical properties of the protective MgO layer. In parallel, PVD enabled the deposition of Mg/MgO and TiO2 thin films with tailored thicknesses, providing precise control over key optical parameters such as reflectivity and interference effects. Mg/MgO coatings demonstrated high UV reflectivity, while TiO2 layers, with their varying refractive indices, generated vibrant colors in the visible (Vis) range through thickness-dependent light interference. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) assessed the quality, thickness, and uniformity of these thin films, and UV/Vis spectroscopy confirmed the influence of deposition parameters on the resulting optical performance. Post-lamination analyses revealed that both EPD and PVD modifications significantly enhanced UV reflectivity and allowed for customizable color effects. This dual strategy underscores the potential of combining EPD and PVD to develop advanced CFRPs with superior UV resistance, decorative optical features, and improved environmental stability. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 12311 KB  
Article
Rapid and Efficient Polymer/Contaminant Removal from Single-Layer Graphene via Aqueous Sodium Nitrite Rinsing for Enhanced Electronic Applications
by Kimin Lee, Juneyoung Kil, JaeWoo Park, Sui Yang and Byoungchoo Park
Polymers 2025, 17(5), 689; https://doi.org/10.3390/polym17050689 - 4 Mar 2025
Viewed by 2008
Abstract
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping [...] Read more.
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping and reduced electronic performance capabilities. This study presents a rapid and efficient surface treatment method that relies on an aqueous sodium nitrite (NaNO2) solution to remove such contaminants effectively. The NaNO2 solution rinse leverages reactive nitric oxide (NO) species to neutralize ionic contaminants (e.g., Cl) and partially oxidize polymer residues in less than 10 min, thereby facilitating a more thorough final cleaning while preserving the intrinsic properties of graphene. Characterization techniques, including atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and X-ray photoelectron spectroscopy (XPS), demonstrated substantial reductions in the levels of surface residues. The treatment restored the work function of the SLG to approximately 4.79 eV, close to that of pristine graphene (~4.5–4.8 eV), compared to the value of nearly 5.09 eV for conventional SLG samples treated with deionized (DI) water. Raman spectroscopy confirmed the reduced doping effects and improved structural integrity of the rinsed SLG. This effective rinsing process enhances the reproducibility and performance of SLG, enabling its integration into advanced electronic devices such as organic light-emitting diodes (OLEDs), photovoltaic (PV) cells, and transistors. Furthermore, the technique is broadly applicable to other two-dimensional (2D) materials, paving the way for next-generation (opto)electronic technologies. Full article
(This article belongs to the Special Issue Graphene-Based Polymer Composites and Their Applications II)
Show Figures

Figure 1

18 pages, 4179 KB  
Article
Enhancing the Morpho-Structural Stability of FAPbBr3 Solar Cells via 2D Nanoscale Layer Passivation of the Perovskite Interface: An In-Situ XRD Study
by Barbara Paci, Flavia Righi Riva, Amanda Generosi, Marco Guaragno, Jessica Barichello, Fabio Matteocci and Aldo Di Carlo
Nanomaterials 2025, 15(5), 327; https://doi.org/10.3390/nano15050327 - 20 Feb 2025
Cited by 2 | Viewed by 1795
Abstract
Despite the huge progress achieved in the optimization of perovskite solar cell (PSC) performance, stability remains a limiting factor for technological commercialization. Here, a study on the photovoltaic, structural and morphological stability of semi-transparent formamidinium lead bromide-based PSCs is presented. This work focuses [...] Read more.
Despite the huge progress achieved in the optimization of perovskite solar cell (PSC) performance, stability remains a limiting factor for technological commercialization. Here, a study on the photovoltaic, structural and morphological stability of semi-transparent formamidinium lead bromide-based PSCs is presented. This work focuses on the positive role of 2D nanoscale layer passivation, induced by perovskite surface treatment with a mixture of iso-Pentylammonium chloride (ISO) and neo-Pentylammonium chloride (NEO). In situ X-ray diffraction (XRD) is applied in combination with atomic force microscopy (AFM), and the results are correlated to the devices’ photovoltaic performances. The superior power conversion efficiency and overall stability of the ISO-NEO system is evidenced, as compared to the un-passivated device, under illumination in air. Furthermore, the role of the ISO-NEO treatments in increasing the morpho-structural stability is clarified as follows: a bulk effect resulting in a protective role against the loss in crystallinity of the perovskite 3D phase (observed only for the un-passivated device) and an interface effect, being the observed 2D phase crystallinity loss spatially localized at the interface with the 3D phase where a higher concentration of defects is expected. Importantly, the complete stability of the device is achieved with the passivated ISO-NEO-encapsulated device, allowing us to exclude the intrinsic degradation effects. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Figure 1

31 pages, 2559 KB  
Review
Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia
by Logan Seymour, Niyogushima Nuru, Kaya R. Johnson, Jennifer Michel Villalpando Gutierrez, Victor Tochukwu Njoku, Costel C. Darie and Anca-Narcisa Neagu
Molecules 2025, 30(3), 645; https://doi.org/10.3390/molecules30030645 - 1 Feb 2025
Cited by 6 | Viewed by 3946
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast [...] Read more.
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial–mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells. Full article
(This article belongs to the Special Issue Featured Review Papers in Bioorganic Chemistry)
Show Figures

Figure 1

25 pages, 10162 KB  
Article
Repetitive Overuse Injury Causes Entheseal Damage and Palmar Muscle Fibrosis in Older Rats
by Parth R. Patel, Istvan P. Tamas, Megan Van Der Bas, Abby Kegg, Brendan A. Hilliard, Alex G. Lambi, Steven N. Popoff and Mary F. Barbe
Int. J. Mol. Sci. 2024, 25(24), 13546; https://doi.org/10.3390/ijms252413546 - 18 Dec 2024
Cited by 1 | Viewed by 2405
Abstract
Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14–18 months of age). Thirty-three rats underwent a 4-week [...] Read more.
Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14–18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls. HRLF animals showed a reduced grip strength versus controls. ELISAs carried out in the HRLF rats, versus controls, showed elevated levels of IL1-α in tendons, IL1-α and TNF-α in distal bones/entheses, and TNF-α, MIP1-α/CCL3, and CINC-2/CXCL-3 in serum, as well as IL-6 in forelimb muscles and tendons, and IL-10 in serum. HRLF rats had elevated collagen deposition in the forepaw intrinsic muscles (i.e., fibrosis), entheseal microdamage, and articular cartilage degradation versus the control rats. CD68/ED1+ osteoclasts and single-nucleated cells were elevated in distal forelimb metaphyses of the HRLF animals, versus controls. Declines in grip strength correlated with muscle fibrosis, entheseal microdamage, articular cartilage damage, distal bone/enthesis IL1-α, and serum IL-6. These data demonstrate inflammatory and persistent degradative changes in the forearm/forepaw tissues of mature female animals exposed to prolonged repetitive tasks, changes with clinical relevance to work-related overuse injuries in mature human females. Full article
(This article belongs to the Special Issue Fascial Anatomy and Histology: Advances in Molecular Biology)
Show Figures

Figure 1

16 pages, 3113 KB  
Article
Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study
by Eva Dohle, Lianna Zhu, Robert Sader and Shahram Ghanaati
Int. J. Mol. Sci. 2024, 25(23), 12983; https://doi.org/10.3390/ijms252312983 - 3 Dec 2024
Viewed by 1189
Abstract
Nonmelanoma skin cancer (NMSC) presents a significant challenge to global healthcare due to its rising incidence, prompting the search for innovative treatments to overcome the limitations of current therapies. Our study aims to explore the potential effects of the liquid blood concentrate platelet-rich [...] Read more.
Nonmelanoma skin cancer (NMSC) presents a significant challenge to global healthcare due to its rising incidence, prompting the search for innovative treatments to overcome the limitations of current therapies. Our study aims to explore the potential effects of the liquid blood concentrate platelet-rich fibrin (PRF) on basal cell carcinoma cells (BCCs) and squamous cell carcinoma cells (SCCs) in order to obtain results that may lead to new possible adjunctive therapies for managing localized skin cancers, particularly NMSC. Basal cell carcinoma (BCC) cells and squamous cell carcinoma (SCC) cells were indirectly treated with PRF generated via different relative centrifugation forces, namely high and low RCF PRF, for 7 days. PRF-treated cells were comparatively analyzed for cell viability, proliferation and cell cycle- and apoptosis-related gene expression. Analysis of MTS assay results revealed a significant decrease in cell viability in both BCC and SCC cells following PRF treatment for 7 days. Ki-67 staining showed a decreased percentage of Ki-67-positive cells in both BCC and SCC cells after 2 days of treatment compared to the control group. The downregulation of CCND1 gene expression in both cell types at 2 days along with the upregulation of p21 and p53 gene expression in SCC cells demonstrated the effect of PRF in inhibiting cell proliferation and inducing cell cycle arrest, especially during the initial phases of treatment. Increased expression of caspase-8 and caspase-9 was observed, indicating the activation of both extrinsic and intrinsic apoptotic pathways by PRF treatment. Although the exact immunomodulatory properties of PRF require further investigation, the results of our basic in vitro studies are promising and might provide a basis for future investigations of PRF as an adjunctive therapy for managing localized skin cancers, particularly NMSC. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 5313 KB  
Review
Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology
by Jing Guo, Li Li, Feiyi Chen, Minhan Fu, Cheng Cheng, Meizi Wang, Jun Hu, Lixia Pei and Jianhua Sun
Biomolecules 2024, 14(7), 804; https://doi.org/10.3390/biom14070804 - 7 Jul 2024
Cited by 5 | Viewed by 5206
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely [...] Read more.
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders. Full article
Show Figures

Figure 1

12 pages, 3274 KB  
Article
Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends
by Laura Hrostea, Anda Oajdea and Liviu Leontie
Polymers 2024, 16(10), 1324; https://doi.org/10.3390/polym16101324 - 8 May 2024
Cited by 4 | Viewed by 2409
Abstract
This paper investigates the influence of constituent weight ratios on optical and electrical properties, with a particular focus on the intrinsic properties (such as electrical mobility) of ternary organic blends, highlighting the role of a third component. The study explores novel donor:acceptor1:acceptor2 (D:A [...] Read more.
This paper investigates the influence of constituent weight ratios on optical and electrical properties, with a particular focus on the intrinsic properties (such as electrical mobility) of ternary organic blends, highlighting the role of a third component. The study explores novel donor:acceptor1:acceptor2 (D:A1:A2) matrix blends with photovoltaic potential, systematically adjusting the ratio of the two acceptors in the mixtures, while keeping constant the donor:acceptor weight ratio (D:A = 1:1.4). Herein, depending on this adjustment, six different samples of 100–400 nm thickness are methodically characterized. Optical analysis demonstrates the spectral complementarity of the component materials and exposes the optimal weight ratio (D:A1:A2 = 1:1:0.4) for the highest optical absorption coefficient. Atomic force microscopy (AFM) analysis reveals improved and superior morphological attributes with the addition of the third component (fullerene). In terms of the electrical mobility of charge carriers, this study finds that the sample in which A1 = A2 has the greatest recorded value [μmax=1.41×104cm2/(Vs)]. This thorough study on ternary organic blends reveals the crucial relationship between acceptor ratios and the properties of the final blend, highlighting the critical function of the third component in influencing the intrinsic factors such as electrical mobility, offering valuable insights for the optimization of ternary organic solar cells. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage)
Show Figures

Graphical abstract

18 pages, 2609 KB  
Article
Cancer Cell Biomechanical Properties Accompany Tspan8-Dependent Cutaneous Melanoma Invasion
by Gaël Runel, Noémie Lopez-Ramirez, Laetitia Barbollat-Boutrand, Muriel Cario, Simon Durand, Maxime Grimont, Manfred Schartl, Stéphane Dalle, Julie Caramel, Julien Chlasta and Ingrid Masse
Cancers 2024, 16(4), 694; https://doi.org/10.3390/cancers16040694 - 6 Feb 2024
Cited by 3 | Viewed by 2726
Abstract
The intrinsic biomechanical properties of cancer cells remain poorly understood. To decipher whether cell stiffness modulation could increase melanoma cells’ invasive capacity, we performed both in vitro and in vivo experiments exploring cell stiffness by atomic force microscopy (AFM). We correlated stiffness properties [...] Read more.
The intrinsic biomechanical properties of cancer cells remain poorly understood. To decipher whether cell stiffness modulation could increase melanoma cells’ invasive capacity, we performed both in vitro and in vivo experiments exploring cell stiffness by atomic force microscopy (AFM). We correlated stiffness properties with cell morphology adaptation and the molecular mechanisms underlying epithelial-to-mesenchymal (EMT)-like phenotype switching. We found that melanoma cell stiffness reduction was systematically associated with the acquisition of invasive properties in cutaneous melanoma cell lines, human skin reconstructs, and Medaka fish developing spontaneous MAP-kinase-induced melanomas. We observed a systematic correlation of stiffness modulation with cell morphological changes towards mesenchymal characteristic gains. We accordingly found that inducing melanoma EMT switching by overexpressing the ZEB1 transcription factor, a major regulator of melanoma cell plasticity, was sufficient to decrease cell stiffness and transcriptionally induce tetraspanin-8-mediated dermal invasion. Moreover, ZEB1 expression correlated with Tspan8 expression in patient melanoma lesions. Our data suggest that intrinsic cell stiffness could be a highly relevant marker for human cutaneous melanoma development. Full article
(This article belongs to the Special Issue Mechanisms of Melanoma Progression)
Show Figures

Figure 1

21 pages, 5938 KB  
Article
On the Prevalence and Roles of Proteins Undergoing Liquid–Liquid Phase Separation in the Biogenesis of PML-Bodies
by Sergey A. Silonov, Yakov I. Mokin, Eugene M. Nedelyaev, Eugene Y. Smirnov, Irina M. Kuznetsova, Konstantin K. Turoverov, Vladimir N. Uversky and Alexander V. Fonin
Biomolecules 2023, 13(12), 1805; https://doi.org/10.3390/biom13121805 - 18 Dec 2023
Cited by 3 | Viewed by 3674
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. [...] Read more.
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid–liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected. Full article
Show Figures

Figure 1

Back to TopTop