Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = catalytic fast pyrolysis (CFP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6818 KiB  
Article
Efficient Conversion of Lignin to Aromatics via Catalytic Fast Pyrolysis over Niobium-Doped HZSM-5
by Zhen Li, Huihui Zhang, Deshi Yang, Zhipeng Hu, Fengqiang Wang and Zhijun Zhang
Molecules 2023, 28(10), 4245; https://doi.org/10.3390/molecules28104245 - 22 May 2023
Cited by 9 | Viewed by 2543
Abstract
A niobium-doped HZSM-5 (H[Nb]ZSM-5) was prepared by a hydrothermal synthesis method. The morphology, phase structure, composition, pore structure, and acid content of the catalyst were characterized using a series of analysis techniques such as scanning electron microscope (SEM), energy-dispersive X-ray (EDX), X-ray diffraction [...] Read more.
A niobium-doped HZSM-5 (H[Nb]ZSM-5) was prepared by a hydrothermal synthesis method. The morphology, phase structure, composition, pore structure, and acid content of the catalyst were characterized using a series of analysis techniques such as scanning electron microscope (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption, and temperature programmed desorption measurements (NH3-TPD). The H[Nb]ZSM-5 catalyst fully remained within the crystal framework and pore structure of HZSM-5. Meanwhile, introduction of niobium (V) endowed the catalyst with both Lewis acid and Bronsted acid sites. Catalytic fast pyrolysis (CFP) of alkali lignin was carried out through a pyrolysis and gas chromatography-mass spectrometry (Py-GC/MS) at 650 °C and atmospheric pressure. The results indicated that H[Nb]ZSM-5 can efficiently and selectively convert lignin into monoaromatic hydrocarbons (MAHs), compared to the control HZSM-5. Catalyzed by H[Nb]ZSM-5, the content of MAHs and aliphatic hydrocarbons reached 43.4% and 20.8%, respectively; while under the catalysis of HZSM-5, these values were 35.5% and 3.2%, respectively. H[Nb]ZSM-5 remarkably lowered the phenol content to approximately 2.8%, which is far lower than the content (24.9%) obtained under HZSM-5 catalysis. Full article
(This article belongs to the Collection Recycling of Biomass Resources: Biofuels and Biochemicals)
Show Figures

Figure 1

10 pages, 1633 KiB  
Article
Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5
by Shengpeng Xia, Chenyang Wang, Yu Chen, Shunshun Kang, Kun Zhao, Anqing Zheng, Zengli Zhao and Haibin Li
Catalysts 2022, 12(11), 1483; https://doi.org/10.3390/catal12111483 - 20 Nov 2022
Cited by 4 | Viewed by 2183
Abstract
The catalytic fast pyrolysis (CFP) of bio-derived furans offers a promising approach for sustainable aromatic production. ZSM-5 modified by different metal species (Zn, Mo, Fe, and Ga) was employed in the CFP of bio-derived furans for enhancing aromatic production. The effects of metal [...] Read more.
The catalytic fast pyrolysis (CFP) of bio-derived furans offers a promising approach for sustainable aromatic production. ZSM-5 modified by different metal species (Zn, Mo, Fe, and Ga) was employed in the CFP of bio-derived furans for enhancing aromatic production. The effects of metal species, metal loadings, and the weight hourly space velocity (WHSV) on the product distributions from the CFP of 2-methylfuran (MF) were systemically investigated. It is found that the introduction of Zn, Mo, Fe, and Ga on ZSM-5 significantly increases the MF conversion and aromatic yields. The maximum MF conversions of 75.49 and 69.03% are obtained, respectively, by Fe-ZSM-5 and Ga-ZSM-5, which boost the aromatic yield by 34.5 and 42.7% compared to ZSM-5. The optimal loading of Fe on ZSM-5 is 2%. Additionally, the highest aromatic yield of 40.03% is achieved by 2%Fe-ZSM-5 at a WHSV of 2 h−1. The catalyst characterization demonstrates that the synergistic effect of Brønsted and Lewis acid sites in Fe-ZSM-5 is responsible for achieving the efficient aromatization of MF. The key to designing improved zeolite catalysts for MF aromatization is the introduction of large numbers of new Lewis acid sites without a significant loss of Brønsted acid sites in ZSM-5. These findings can provide guidelines for the rational design of better zeolite catalysts used in the CFP of biomass and its derived furans. Full article
Show Figures

Figure 1

16 pages, 7880 KiB  
Article
Highly Selective Production of Valuable Aromatic Hydrocarbons/Phenols from Forestry and Agricultural Residues Using Ni/ZSM-5 Catalyst
by Xuan Zhou, Hongling Pan, Shuixiang Xie, Guotao Li, Zhicai Du, Xiang Wang and Yan Luo
Processes 2022, 10(10), 1970; https://doi.org/10.3390/pr10101970 - 30 Sep 2022
Cited by 6 | Viewed by 2185
Abstract
The aim of this research is to design and synthesize an efficient catalyst to enhance high value-added products, such as aromatic hydrocarbons and phenols, from the catalytic fast pyrolysis (CFP) of different types of forestry and agricultural residues. All three biomasses (rape straw, [...] Read more.
The aim of this research is to design and synthesize an efficient catalyst to enhance high value-added products, such as aromatic hydrocarbons and phenols, from the catalytic fast pyrolysis (CFP) of different types of forestry and agricultural residues. All three biomasses (rape straw, wheat straw, and bamboo powder) had no aromatic production via thermal pyrolysis alone; however, the aromatic selectivity and monocyclic aromatic selectivity were largely enhanced using ZSM-5, with suitable silica-alumina ratios and Ni loadings. Specifically, for rape straw, the optimum catalyst was 15 wt.% Ni/ZSM-5 (silica-aluminum ratios = 85), and the selectivity of aromatic hydrocarbons was achieved at 39%, of which 71% were monocyclic aromatic hydrocarbons. For wheat straw, the optimum catalyst was 10 wt.% Ni/ZSM-5 (silica-aluminum ratios = 18), and the selectivity of aromatic hydrocarbons was 67%, of which 55% were monocyclic aromatic hydrocarbons. For bamboo powder, the optimum catalyst was 10 wt.% Ni/ZSM-5 (silica-aluminum ratios = 18), and the selectivity of aromatic hydrocarbons was achieved at 21%, of which 80% were monocyclic aromatic hydrocarbons. Meanwhile, biomass types have significant effects on the pyrolyzed product distribution due to their different components. Cellulose and hemicellulose promoted the production of aromatic hydrocarbons, while lignin enhanced the production of phenols. The promotion of phenol by Ni was better and more efficient than that by the molecular sieve. Full article
(This article belongs to the Topic Advances in Biomass Conversion)
Show Figures

Figure 1

12 pages, 1614 KiB  
Article
Influence of Biomass Inorganics on the Functionality of H+ZSM-5 Catalyst during In-Situ Catalytic Fast Pyrolysis
by Ravishankar Mahadevan, Sushil Adhikari, Rajdeep Shakya and Oladiran Fasina
Catalysts 2021, 11(1), 124; https://doi.org/10.3390/catal11010124 - 15 Jan 2021
Cited by 5 | Viewed by 2741
Abstract
In this study, the contamination of H+ZSM-5 catalyst by calcium, potassium and sodium was investigated by deactivating the catalyst with various concentrations of these inorganics, and the subsequent changes in the properties of the catalyst are reported. Specific surface area analysis [...] Read more.
In this study, the contamination of H+ZSM-5 catalyst by calcium, potassium and sodium was investigated by deactivating the catalyst with various concentrations of these inorganics, and the subsequent changes in the properties of the catalyst are reported. Specific surface area analysis of the catalysts revealed a progressive reduction with increasing concentrations of the inorganics, which could be attributed to pore blocking and diffusion resistance. Chemisorption studies (NH3-TPD) showed that the Bronsted acid sites on the catalyst had reacted with potassium and sodium, resulting in a clear loss of active sites, whereas the presence of calcium did not appear to cause extensive chemical deactivation. Pyrolysis experiments revealed the progressive loss in catalytic activity, evident due the shift in selectivity from producing only aromatic hydrocarbons (benzene, toluene, xylene, naphthalenes and others) with the fresh catalyst to oxygenated compounds such as phenols, guaiacols, furans and ketones with increasing contamination by the inorganics. The carbon yield of aromatic hydrocarbons decreased from 22.3% with the fresh catalyst to 1.4% and 2.1% when deactivated by potassium and sodium at 2 wt %, respectively. However, calcium appears to only cause physical deactivation. Full article
(This article belongs to the Special Issue Catalysis in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

10 pages, 2304 KiB  
Article
Catalytic Fast Pyrolysis of Biomass into Aromatic Hydrocarbons over Mo-Modified ZSM-5 Catalysts
by Laizhi Sun, Zhibin Wang, Lei Chen, Shuangxia Yang, Xinping Xie, Mingjie Gao, Baofeng Zhao, Hongyu Si, Jian Li and Dongliang Hua
Catalysts 2020, 10(9), 1051; https://doi.org/10.3390/catal10091051 - 12 Sep 2020
Cited by 29 | Viewed by 3707
Abstract
Mo-modified ZSM-5 catalysts were prepared and used to produce aromatic hydrocarbons during catalytic fast pyrolysis (CFP) of biomass. The composition and distribution of aromatics were investigated on pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The reaction factors, such as the Mo content, the reaction temperature and [...] Read more.
Mo-modified ZSM-5 catalysts were prepared and used to produce aromatic hydrocarbons during catalytic fast pyrolysis (CFP) of biomass. The composition and distribution of aromatics were investigated on pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The reaction factors, such as the Mo content, the reaction temperature and the catalyst/biomass mass ratio, were also optimized. It was found that the 10Mo/ZSM-5 catalyst displayed the best activity in improving the production of monocyclic aromatic hydrocarbons (MAHs) and decreasing the yield of polycyclic aromatic hydrocarbons (PAHs) at 600 °C and with a catalyst/biomass ratio of 10. Furthermore, according to catalyst characterization and the experiment results, the aromatics formation mechanism over Mo/ZSM-5 catalysts was also summarized and proposed. Full article
Show Figures

Figure 1

26 pages, 363 KiB  
Review
Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review
by Junjian Liu, Qidong Hou, Meiting Ju, Peng Ji, Qingmei Sun and Weizun Li
Catalysts 2020, 10(7), 742; https://doi.org/10.3390/catal10070742 - 4 Jul 2020
Cited by 76 | Viewed by 10586
Abstract
With the aggravation of the energy crisis and environmental problems, biomass resource, as a renewable carbon resource, has received great attention. Catalytic fast pyrolysis (CFP) is a promising technology, which can convert solid biomass into high value liquid fuel, bio-char and syngas. Catalyst [...] Read more.
With the aggravation of the energy crisis and environmental problems, biomass resource, as a renewable carbon resource, has received great attention. Catalytic fast pyrolysis (CFP) is a promising technology, which can convert solid biomass into high value liquid fuel, bio-char and syngas. Catalyst plays a vital role in the rapid pyrolysis, which can increase the yield and selectivity of aromatics and other products in bio-oil. In this paper, the traditional zeolite catalysts and metal modified zeolite catalysts used in CFP are summarized. The influence of the catalysts on the yield and selectivity of the product obtained from pyrolysis was discussed. The deactivation and regeneration of the catalyst were discussed. Catalytic co-pyrolysis (CCP) and microwave-assisted pyrolysis (MAP) are new technologies developed in traditional pyrolysis technology. CCP improves the problem of hydrogen deficiency in the biomass pyrolysis process and raises the yield and character of pyrolysis products, through the co-feeding of biomass and hydrogen-rich substances. The pyrolysis reactions of biomass and polymers (plastics and waste tires) in CCP were reviewed to obtain the influence of co-pyrolysis on composition and selectivity of pyrolysis products. The catalytic mechanism of the catalyst in CCP and the reaction path of the product are described, which is very important to improve the understanding of co-pyrolysis technology. In addition, the effects of biomass pretreatment, microwave adsorbent, catalyst and other reaction conditions on the pyrolysis products of MAP were reviewed, and the application of MAP in the preparation of high value-added biofuels, activated carbon and syngas was introduced. Full article
15 pages, 3108 KiB  
Article
Novel Micro-Mesoporous Composite ZSM-5 Catalyst for Aromatics Production by Catalytic Fast Pyrolysis of Lignin Residues
by Wenbo Wang, Zhongyang Luo, Simin Li, Shuang Xue and Haoran Sun
Catalysts 2020, 10(4), 378; https://doi.org/10.3390/catal10040378 - 1 Apr 2020
Cited by 16 | Viewed by 2805
Abstract
The industrial utilization of lignocellulosic biomass is often accompanied by lots of lignin residues. Catalytic fast pyrolysis (CFP) is a high-throughput method to convert lignin to aromatics and phenolics. In order to optimize catalytic performance, conventional zeolite catalysts often need to have mesostructural [...] Read more.
The industrial utilization of lignocellulosic biomass is often accompanied by lots of lignin residues. Catalytic fast pyrolysis (CFP) is a high-throughput method to convert lignin to aromatics and phenolics. In order to optimize catalytic performance, conventional zeolite catalysts often need to have mesostructural modification. Here, based on hierarchical zeolite (HZ), a novel micro-mesoporous composite zeolite was obtained by redeposition under mild conditions. The conversion of two industrial lignin residues, Kraft Lignin (KL) and Pyrolytic Lignin (PL), was investigated. Interestingly, the hierarchical sample was more suitable for the case of higher concentration of primary pyrolysis products such as CFP of PL, with aromatics yield of 12.7 wt % and a monocyclic aromatic hydrocarbons (MAHs) to polycyclic aromatic hydrocarbons (PAHs) mass ratio of 4.86. The mesoporous composite zeolite possessed a better PAHs suppression capability as M/P reached 6.06, and was suitable for low reactants’ concentration and high oxygen content, such as KL CFP, with a higher aromatics yield of 3.3 wt % and M/P of 5.12. These results were compared with poplar sawdust as actual biomass, and mesoporous samples were both highly efficient catalysts with MAHs yield over 10 wt % and M/P around 5. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

13 pages, 2088 KiB  
Article
Optimizing the Aromatic Product Distribution from Catalytic Fast Pyrolysis of Biomass Using Hydrothermally Synthesized Ga-MFI Zeolites
by Jian Li, Xiangyu Li, Derun Hua, Xinning Lu and Yujue Wang
Catalysts 2019, 9(10), 854; https://doi.org/10.3390/catal9100854 - 13 Oct 2019
Cited by 12 | Viewed by 3376
Abstract
A series of gallium-containing MFI (Ga-MFI) zeolites with varying Ga2O3/Al2O3 ratios were synthesized using hydrothermal synthesis and tested as catalyst in catalytic fast pyrolysis (CFP) of beech wood for aromatic production. The results show that the [...] Read more.
A series of gallium-containing MFI (Ga-MFI) zeolites with varying Ga2O3/Al2O3 ratios were synthesized using hydrothermal synthesis and tested as catalyst in catalytic fast pyrolysis (CFP) of beech wood for aromatic production. The results show that the incorporation of Ga slightly reduced the effective pore size of Ga-MFI zeolites compared to conventional HZSM-5 zeolites. Therefore, the Ga-MFI zeolites increased the aromatic selectivity for smaller aromatics such as benzene, toluene, and p-xylene and decreased the aromatic selectivity for bulkier ones such as m-xylene, o-xylene, and polyaromatics in CFP of beech wood relative to HSZM-5. In particular, the yield and selectivity of p-xylene, the most desired product from CFP of biomass, increased considerably from 1.64 C% and 33.3% for conventional HZSM-5 to 2.98–3.34 C% and 72.1–79.6% for the synthesized Ga-MFI zeolites. These results suggest that slightly reducing the pore size of MFI zeolite by Ga incorporation has a beneficial effect on optimizing the aromatic selectivity toward more valuable monoaromatic products, especially p-xylene, during CFP of biomass. Full article
(This article belongs to the Special Issue Catalytic Fast Pyrolysis)
Show Figures

Figure 1

14 pages, 3307 KiB  
Article
Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia over Ca(OH)2/Al2O3 Catalysts
by Lujiang Xu, Xin-wen Na, Le-yao Zhang, Qian Dong, Guo-hua Dong, Yi-tong Wang and Zhen Fang
Catalysts 2019, 9(5), 436; https://doi.org/10.3390/catal9050436 - 9 May 2019
Cited by 14 | Viewed by 5840
Abstract
A series of Ca(OH)2/Al2O3 catalysts were synthesized for selectively producing N-containing chemicals from polyethylene terephthalate (PET) via catalytic fast pyrolysis with ammonia (CFP-A) process. During the CFP-A process, the carboxyl group in PET plastic was efficiently utilized for [...] Read more.
A series of Ca(OH)2/Al2O3 catalysts were synthesized for selectively producing N-containing chemicals from polyethylene terephthalate (PET) via catalytic fast pyrolysis with ammonia (CFP-A) process. During the CFP-A process, the carboxyl group in PET plastic was efficiently utilized for the selective production of terephthalonitrile and benzonitrile by controlling the catalysts and pyrolysis parameters (e.g. temperature, residence time, ammonia content). The best conditions were selected as 2% Ca(OH)2/γ-Al2O3 (0.8 g), 500 °C under pure ammonia with 58.3 C% terephthalonitrile yield and 92.3% selectivity in nitriles. In addition, 4% Ca(OH)2/ Al2O3 was suitable for producing benzonitrile. With catalyst dosage of 1.2 g, residence time of 1.87 s, pyrolysis temperature of 650 °C and pure ammonia (160 mL/min carrier gas flow rate), the yield and selectivity of benzonitrile were 30.4 C% and 82.6%, respectively. The catalysts deactivated slightly after 4 cycles. Full article
(This article belongs to the Special Issue Catalytic Biomass to Renewable Biofuels and Biomaterials)
Show Figures

Graphical abstract

8 pages, 1583 KiB  
Communication
Acetic Acid/Propionic Acid Conversion on Metal Doped Molybdenum Carbide Catalyst Beads for Catalytic Hot Gas Filtration
by Mi Lu, Andrew W. Lepore, Jae-Soon Choi, Zhenglong Li, Zili Wu, Felipe Polo-Garzon and Michael Z. Hu
Catalysts 2018, 8(12), 643; https://doi.org/10.3390/catal8120643 - 9 Dec 2018
Cited by 8 | Viewed by 4617
Abstract
Catalytic hot gas filtration (CHGF) is used to precondition biomass derived fast pyrolysis (FP) vapors by physically removing reactive char and alkali particulates and chemically converting reactive oxygenates to species that are more easily upgraded during subsequent catalytic fast pyrolysis (CFP). Carboxylic acids, [...] Read more.
Catalytic hot gas filtration (CHGF) is used to precondition biomass derived fast pyrolysis (FP) vapors by physically removing reactive char and alkali particulates and chemically converting reactive oxygenates to species that are more easily upgraded during subsequent catalytic fast pyrolysis (CFP). Carboxylic acids, such as acetic acid and propionic acid, form during biomass fast pyrolysis and are recalcitrant to downstream catalytic vapor upgrading. This work developed and evaluated catalysts that can convert these acids to more upgradeable ketones at the laboratory scale. Selective catalytic conversion of these reactive oxygenates to more easily upgraded compounds can enhance bio-refinery processing economics through catalyst preservation by reduced coking from acid cracking, by preserving carbon efficiency, and through process intensification by coupling particulate removal with partial upgrading. Two metal-doped molybdenum carbide (Mo2C) supported catalyst beads were synthesized and evaluated and their performance compared with an undoped Mo2C control catalyst beads. For laboratory scale acetic acid conversion, calcium doped Mo2C supported catalyst beads produced the highest yield of acetone at ~96% at 450 °C among undoped and Ca or Ni doped catalysts. Full article
Show Figures

Graphical abstract

11 pages, 2026 KiB  
Article
Catalytic Copyrolysis of Cork Oak and Waste Plastic Films over HBeta
by Young-Kwon Park, Boram Lee, Atsushi Watanabe, Hyung Won Lee, Ji Young Lee, Seungdo Kim, Tae Uk Han and Young-Min Kim
Catalysts 2018, 8(8), 318; https://doi.org/10.3390/catal8080318 - 3 Aug 2018
Cited by 7 | Viewed by 4712
Abstract
The catalytic fast copyrolysis (CFCP) of cork oak (CoOak) and waste plastic films (WPFs) over HBeta(25) (SiO2/Al2O3: 25) was investigated using a thermogravimetric (TG) analyzer and a tandem micro reactor-gas chromatography/mass spectrometry (TMR-GC/MS) to determine the effectiveness [...] Read more.
The catalytic fast copyrolysis (CFCP) of cork oak (CoOak) and waste plastic films (WPFs) over HBeta(25) (SiO2/Al2O3: 25) was investigated using a thermogravimetric (TG) analyzer and a tandem micro reactor-gas chromatography/mass spectrometry (TMR-GC/MS) to determine the effectiveness of WPFs as the hydrogen donating cofeeding feedstock on the CFCP of biomass. By applying CFCP, the maximum decomposition temperatures of CoOak (373.4 °C) and WPFs (487.9 °C) were reduced to 364.5 °C for CoOak and 436.5 °C for WPFs due to the effective interaction between the pyrolysis intermediates of CoOak and WPFs over HBeta(25), which has strong acidity and an appropriate pore size. The experimental yields of aromatic hydrocarbons on the CFCP of CoOak and WPFs were higher than their calculated yields concluded from the yields obtained from the individual catalytic fast pyrolysis (CFP) of CoOak and WPFs. The coke amount produced from the CFP of CoOak and WPFs over HBeta(25) were also decreased by applying CFCP. Full article
(This article belongs to the Special Issue Synthesis and Application of Zeolite Catalysts)
Show Figures

Graphical abstract

13 pages, 5112 KiB  
Article
Catalytic Fast Pyrolysis of Kraft Lignin over Hierarchical HZSM-5 and Hβ Zeolites
by Yadong Bi, Xiaojuan Lei, Guihua Xu, Hui Chen and Jianli Hu
Catalysts 2018, 8(2), 82; https://doi.org/10.3390/catal8020082 - 14 Feb 2018
Cited by 49 | Viewed by 5429
Abstract
The hierarchical HZSM-5 and Hβ zeolites were prepared by alkaline post-treatment methods adopting Na2CO3, TMAOH/NaOH mixture, and NaOH as desilication sources, respectively. More mesopores are produced over two kinds of zeolites, while the micropores portion is well preserved. The [...] Read more.
The hierarchical HZSM-5 and Hβ zeolites were prepared by alkaline post-treatment methods adopting Na2CO3, TMAOH/NaOH mixture, and NaOH as desilication sources, respectively. More mesopores are produced over two kinds of zeolites, while the micropores portion is well preserved. The mesopores formed in hierarchical Hβ zeolites were directly related to the basicity of the alkaline solution, indicating that Hβ zeolite is more sensitive to the alkaline post-treatment. The hierarchical HZSM-5 and Hβ zeolites are more active than the parent one for catalytic fast pyrolysis (CFP) of Kraft lignin. Hierarchical zeolites retained the function of acid catalysis, while additionally creating larger mesopores to ensure the entry of bulkier reactant molecules. The increase of the condensable volatiles yield can be attributed to the improvement of the mass transfer performance, which correlates well with the change of mesoporous surface area. In particular, the condensable volatiles yield for the optimized hierarchical Hβ reached approximately two times that of the parent Hβ zeolites. In contrast to the parent HZSM-5, the optimized hierarchical HZSM-5 zeolite significantly reduced the selectivity of oxygenates from 27.2% to 3.3%. Full article
(This article belongs to the Special Issue Catalytic Pyrolysis)
Show Figures

Graphical abstract

Back to TopTop