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Abstract: The catalytic fast pyrolysis (CFP) of bio-derived furans offers a promising approach for
sustainable aromatic production. ZSM-5 modified by different metal species (Zn, Mo, Fe, and Ga)
was employed in the CFP of bio-derived furans for enhancing aromatic production. The effects
of metal species, metal loadings, and the weight hourly space velocity (WHSV) on the product
distributions from the CFP of 2-methylfuran (MF) were systemically investigated. It is found that
the introduction of Zn, Mo, Fe, and Ga on ZSM-5 significantly increases the MF conversion and
aromatic yields. The maximum MF conversions of 75.49 and 69.03% are obtained, respectively, by
Fe-ZSM-5 and Ga-ZSM-5, which boost the aromatic yield by 34.5 and 42.7% compared to ZSM-5.
The optimal loading of Fe on ZSM-5 is 2%. Additionally, the highest aromatic yield of 40.03% is
achieved by 2%Fe-ZSM-5 at a WHSV of 2 h−1. The catalyst characterization demonstrates that
the synergistic effect of Brønsted and Lewis acid sites in Fe-ZSM-5 is responsible for achieving the
efficient aromatization of MF. The key to designing improved zeolite catalysts for MF aromatization
is the introduction of large numbers of new Lewis acid sites without a significant loss of Brønsted
acid sites in ZSM-5. These findings can provide guidelines for the rational design of better zeolite
catalysts used in the CFP of biomass and its derived furans.

Keywords: biomass; bio-derived furan; aromatization; ZSM-5; catalyst design

1. Introduction

Nowadays, with increasing concerns regarding the upcoming scarcity of fossil fuel
resources and the environmental issues associated with their usage, unequaled endeav-
ors have been made to produce liquid fuels and chemicals from renewable energy re-
sources [1–3]. Biomass is the only renewable resource capable of producing chemicals and
liquid fuels [4]. Pyrolysis has been recognized as one of the most promising technologies
that can yield diverse phase products comprising char, gas, and bio-oil from biomass [5–7].
However, bio-oil derived from biomass pyrolysis has a complex composition, low calorific
value, high oxygen content, strong acidity, and poor stability, making it unsuitable for use
in the current petroleum infrastructure. Multiple techniques have been applied to bio-oil
upgrading, including raw material pretreatment, catalytic hydrodeoxygenation, and cat-
alytic fast pyrolysis (CFP). Recently, CFP of biomass has been extensively explored, seeking
to selectively produce value-added chemicals from biomass, especially aromatics [8]. Mono-
cyclic aromatics—namely, benzene, toluene, ethylbenzene, and xylene (BTEX)—are bulk
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organic chemicals for the production of rubber, fibers, plastics, resins, coatings, dyes, pesti-
cides, and pharmaceuticals [9]. In addition, they are also significant blending components
of high-octane clean gasoline (accounting for around 21% of the gasoline composition) [10].

Previous studies have established that zeolite is the optimum catalyst for generating
aromatics by the CFP of biomass due to its unique physicochemical features with acidity
and pore structure. A succession of zeolite catalysts has been applied to the CFP of biomass,
including HZSM-5, HY, H-beta, SAPO-34, MCM-41, etc. It has been proven that HZSM-5
has a moderate pore size and excellent shape selectivity for aromatics, whereas HY can
accommodate more intermediate products. Xiangyu Li and coworkers observed that the
CFP of Kraft lignin with HZSM-5 zeolite could produce a variety of valuable chemicals
such as BTX, ethene, and propene [11]. Jae-Young Kim et al. examined the influence of the
acidity of HZSM-5 on the production of aromatics from the pyrolysis of lignin. They found
that the aromatic yield increased from 0.76% (Si/Al mole ratio of 280) to 2.62% (Si/Al mole
ratio of 30) in proportion to increasing catalyst acidity [12]. Shanmugam Thiyagarajan et al.
demonstrated that renewable aromatics may be synthesized from furans using HY zeolite,
which exhibited the best activity and can be readily reused after calcination [13].

It was observed that transition-metal-modified zeolite catalysts may greatly boost
monocyclic aromatic yields and facilitate the transformation of polycyclic aromatics into
monocyclic aromatics. Evgeny A. Uslamin and coworkers reported a mechanistic investi-
gation of the aromatization of furans over Ga-modified HZSM-5 [14–17]. They observed
that the introduction of Ga can enhance aromatic selectivity and influence the deactivation
pathway, leading to the formation of PAHs [17]. It has been reported that the addition of Fe
into ZSM-5 zeolite contributed to the formation of MAHs and simultaneously hindered
the further polymerization reaction of MAHs and other oxygenates during the catalytic
fast pyrolysis of biomass [15]. As mentioned above, the introduction of transition metals
can significantly increase aromatic yields. Here, transition-metal-modified HZSM-5 was
applied to enhance the yield of aromatics.

Bio-derived furans, such as 2-methylfuran (MF), furfural, and 2,5-dimethylfuran,
are key platform molecules obtained from the pyrolysis or hydrolysis of cellulose and
hemicellulose, which have been widely used as the model compounds of cellulose and
hemicellulose [18–30]. Yu-Ting Cheng and George W. Huber investigated the cofeeding
of olefins (ethylene and propylene) with a series of furans over ZSM-5 catalysts and
found that aromatics can be produced directly by Diels–Alder cycloaddition reactions
of furans with olefins [22]. Huiyan Zhang et al. explored the catalytic conversion of
furfural to olefins and aromatics and proposed a catalytic reaction pathway that starts with
furfural decarboxylation to form furan and then form olefins and aromatics with further
reactions [31]. However, there are relatively few studies on the production of aromatics by
the pyrolysis of MF alone and the main pathway from furans to aromatics is through the
Diels–Alder reaction [19,22,28]. Here, MF, a typical representative of bio-derived furans, is
used as a model compound of cellulosic biomass.

In this work, the CFP of MF over ZSM-5 modified by different metals (Mo, Zn, Ga,
and Fe) was carried out in a fixed bed reactor. In addition, different metal loadings and
WHSVs were examined to further improve the catalytic performance. The metal-modified
ZSM-5 catalysts were characterized to establish the structure-reactivity relationship.

2. Results and Discussion
2.1. The Product Distribution from the CFP of MF over ZSM-5 Modified by Different
Metal Species

Figure 1 illustrates the MF conversion and carbon yields of BTEX, olefins, and coke
from the CFP of MF over ZSM-5 modified by different metal species. It is observed that
the introduction of four types of metal (Zn, Mo, Fe, and Ga) can significantly improve
the conversion of MF and the carbon yield of BTEX and aromatics. Compared with raw
ZSM-5 zeolite, metal-modified ZSM-5 zeolites can produce more alkanes, CO, and CO2,
indicating that metal sites can efficiently promote the deoxygenation reactions of MF and
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the formation of alkanes, primarily C1–C3. However, the carbon yield of coke from the CFP
of MF over ZSM-5 increases by metal modification, except for the Mo modification. The
results could be due to the change in the acid amount of the ZSM-5 catalysts caused by
metal modification. It is also observed that metal-modified ZSM-5 catalysts largely improve
the carbon output of benzene and toluene, but the carbon yields of ethylbenzene and xylene
change slightly. The maximum carbon yields of BTEX (23.6%) and aromatics (30.1%) are
obtained by Ga-ZSM-5, whereas the maximum conversion of MF (75.5%) is obtained by Fe-
ZSM-5, which provides the aromatic yield of 28.3%. The Fe and Ga modifications can boost
the aromatic yield by 34.5 and 42.7% compared to raw ZSM-5. Interestingly, the highest
carbon yield of alkylbenzene is gained over Fe-ZSM-5 and the highest carbon yield of
benzene is gained over Ga-ZSM-5, demonstrating that Fe exhibits a stronger aromatization
ability and Ga displays a better dealkylation ability. Meanwhile, Mo and Fe can promote
the formation of olefins (primarily ethylene and propylene). It is noteworthy that when the
metal loading increases from 1 to 4%, the carbon yields of BTEX, aromatics, and conversion
of MF decrease. Similarly, Ga and Fe modification affords the highest MF conversion and
aromatic yields. It is thus concluded that the loading of Zn, Mo, Fe, and Ga on ZSM-5
zeolite can effectively enhance the MF conversion and the yields of BTEX and aromatics.
Fe- and Ga-modified ZSM-5 catalysts exhibit the maximum MF conversion and aromatic
yield, respectively.
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zene, toluene, ethylbenzene, xylene, olefins, oxygenates, alkane, CO, CO2, and coke. Reaction con-
ditions: 550 °C, WHSV: 4 h−1, carrier gas flow rate: 120 mL/min, reaction time: 15 min. 
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Figure 1. The effect of metal species on the product distribution from CFP of MF over metal-
modified ZSM-5: (a,c) carbon yields of BTEX, aromatics, and MF conversion; (b,d) carbon yields of
benzene, toluene, ethylbenzene, xylene, olefins, oxygenates, alkane, CO, CO2, and coke. Reaction
conditions: 550 ◦C, WHSV: 4 h−1, carrier gas flow rate: 120 mL/min, reaction time: 15 min.
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2.2. The Effect of Fe Loading on the Product Distribution from the CFP of MF over Fe-ZSM-5

Fe-ZSM-5 with different Fe loadings is employed in the CFP of MF since Fe-ZSM-5
exhibits the highest MF conversion among the four types of metal-modified ZSM-5. The
resulting product distributions are shown in Figure 2. With the increase in Fe loading, the
MF conversion and the carbon yields of BTEX, aromatics, and coke first increase and then
reach their respective maximum values of 83.3%, 24.3%, 30.3%, and 15.7% at Fe loadings
of 3%, 2%, 2%, and 3%. However, the MF conversion and the yield of aromatics and
coke at an Fe loading of 0.5% are higher than those at an Fe loading of 1%. This may be
owing to the high dispersion of Fe with a 0.5% loading forming more effective active sites.
Simultaneously, the maximum yields of alkylbenzene, olefins, alkane, CO, and CO2 are
achieved at a 2% loading, indicating that 2% is optimum for the CFP of MF. As the Fe
loading increases, the number of acid sites in the Fe-ZSM-5 catalyst increases, and the
pores become blocked, so that the carbon yields of BTEX, aromatics, etc., begin to drop.
Appropriate metal loading and metal dispersion not only improve product distribution but
effectively reduce the consumption of metals.
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Figure 2. Effect of metal loadings on the product distribution from CFP of bio-derived MF: (a) carbon
yields of BTEX, aromatics, and MF conversion; (b) carbon yields of benzene, toluene, ethylbenzene,
xylene, olefins, oxygenates, alkane, CO, CO2, and coke. Reaction conditions: 550 ◦C, WHSV: 4 h−1,
carrier gas flow rate: 120 mL/min, reaction time: 15 min.

2.3. The Effect of WHSV on the Product Distribution from the CFP of MF

Figure 3 showed the detailed product distribution from the conversion of MF at
different WHSVs. The WHSV is defined as the mass flow rate of MF divided by the mass
of the catalyst used in the reactor. In this experiment, the mass of the catalyst was altered
from 0.5 to 2 g, while the mass flow rate of MF was maintained constant. As shown in
Figure 3, the yields of BTEX, aromatics, olefins, and coke are a function of the WHSV. As
the WHSV decreases from 8 h−1 to 2 h−1, the yields of BTEX, aromatics, and coke increase
from 9.23%, 11.72%, and 7.68% to 31.93%, 40.03%, and 23.69%, respectively, while the yield
of olefins increases from 3.61% to 9.01%, and then remains unchanged. As indicated in
Figure 3, the conversion of MF increases with decreasing WHSV and achieves 98.52% at a
WHSV of 2 h−1. It is inferred that the increasing amount of catalyst used can provide more
active sites for the aromatization reaction of MF, leading to an increase in MF conversion
and aromatic yield. These findings reveal that the appropriate WHSV for the conversion of
MF was less than or equal to 2.67 h−1.
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Figure 3. Effect of WHSV on the product distribution from CFP of bio-derived MF: (a) carbon yields
of BTEX, aromatics, and MF conversion; (b) carbon yields of benzene, toluene, ethylbenzene, xylene,
olefins, oxygenates, alkane, CO, CO2, and coke. Reaction conditions: 550 ◦C, catalyst: 2%Fe-ZSM-5,
carrier gas flow rate: 120 mL/min, reaction time: 15 min.

2.4. The Structure-Reactivity Relationship of Metal-Modified ZSM-5 during the CFP of MF

The acid sites and shape selectivity of the zeolite microporous structure are key factors
determining the catalytic performance of metal-modified ZSM-5 during the CFP of MF.
The N2 adsorption-desorption isotherms and pore size distribution of different catalysts
are illustrated in Figure 4; the resulting BET surface area, pore volume, and pore size are
tabulated in Table 1. It is well-known that the molecular-sized micropore structure of
ZSM-5 catalysts provides spatial restrictions around acid sites that allow for shape-selective
catalysis. It can be seen from Table 1 and Figure 4 that the loading of metal species alters
the specific surface area and total pore volume since the ZSM-5 was heated to 60 ◦C in
the metal nitrate solution to evaporate the water during the catalyst preparation process.
As the Fe loading increases from 0.5 to 4%, the BET surface and total pore volume area of
Fe-ZSM-5 first increase and then reach their maximum value at the 2% Fe loading. Larger
specific surface area and pore volume are beneficial for the aromatization reaction of MF.
The results are in line with those in Figure 2, where 2%Fe-ZSM-5 exhibits the maximum
yield of aromatics. It is worth noting that a large number of mesopores are generated when
the Fe loading is from 1 to 3%. The mass transfer of reactant, intermediates, and products
in zeolite channels can be enhanced by the introduction of a large number of mesopores,
thus facilitating the aromatization of MF.
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Table 1. The BET surface area, pore volume, and pore size of different catalysts.

Catalysts BET Surface
(m2/g) a

Total Pore
Volume
(cm3/g) b

Average Pore
Size (nm)

Micropore
Volume
(cm3/g) c

Mesopore
Volume
(cm3/g)

Micropore
Surface Area

(m2/g) c

External
Surface Area

(m2/g)

ZSM-5 408.0 0.34 3.4 0.14 0.20 336.0 72.0
0.5%Fe-ZSM-5 367.4 0.37 4.0 0.12 0.25 291.5 75.8
1%Fe-ZSM-5 380.2 0.41 4.3 0.07 0.35 113.4 266.7
2%Fe-ZSM-5 423.4 0.42 4.0 0.08 0.35 160.5 262.9
3%Fe-ZSM-5 393.8 0.33 3.3 0.08 0.25 172.2 221.6
4%Fe-ZSM-5 352.3 0.30 3.4 0.13 0.17 309.0 43.3

a Calculated by multipoint BET method. b Calculated from absorbed volume of nitrogen for a relative pressure
P/P0 of 0.99. c Determined by t-plot method.

The acid strength and total acid amount of the different catalysts were measured by
NH3-TPD, as shown in Figure 5 and Table 2. The two peaks centered at 190 ◦C and 425 ◦C
correspond to the weak and strong acid sites, respectively. It is obvious that the Fe loading
increases the amount of strong acid sites, whereas it decreases the amount of weak acid
sites. It is well-accepted that strong acid sites are responsible for the formation of coke,
which is consistent with the results in Figure 2, where the Fe loading can promote the
formation of coke [32]. The Fe loading significantly improves the total acid amount of
ZSM-5, which is beneficial for the formation of aromatics during the CFP of MF. As the Fe
loading increases from 0.5 to 4%, the total acid amount of Fe-ZSM-5 first increases and then
decreases. The minimum total acid amount of 1149.97 µmol/g is obtained by 3%Fe-ZSM-5.
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Table 2. The acid strength and total acid amount of Fe-ZSM-5 with different Fe loadings.

Catalysts The First Peak (◦C) The Second Peak (◦C) Amount of Weak
Acid Sites (µmol/g)

Amount of Strong
Acid Sites (µmol/g)

Total Acid Amount
(µmol/g)

ZSM-5 182.50 445.00 827.64 189.08 1016.72
0.5%Fe-ZSM-5 191.277 418.22 783.26 539.58 1322.84
1%Fe-ZSM-5 190.89 426.25 763.26 536.78 1300.04
2%Fe-ZSM-5 188.01 415.39 656.50 546.78 1203.28
3%Fe-ZSM-5 184.95 389.45 614.81 535.16 1149.97
4%Fe-ZSM-5 182.9 444.7 709.90 473.41 1183.31

The Brønsted and Lewis acid sites of Fe-ZSM-5 were determined by Py-FTIR. As
shown in Table 3, the Fe loading greatly alters the Brønsted to Lewis (B/L) ratio and the
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amount of Brønsted acid sites and Lewis acid sites compared to ZSM-5. An FE loading
of 0.5% obviously improves the amount of Brønsted acid sites and Lewis acid sites of
ZSM-5. The Fe loading further increases from 0.5 to 3% and the amount of Brønsted acid
sites of Fe-ZSM-5 gradually drops, whereas the amount of Lewis acid sites continuously
increases. The highest amount of Lewis acid sites (714.27 µmol/g) and the lowest amount
of Brønsted acid sites (435.70 µmol/g) are obtained by 3%Fe-ZSM-5, which also exhibits
the maximum MF conversion of 83.34%. It is speculated the MF conversion is associated
with the amount of Lewis acid sites of Fe-ZSM-5. However, the significant decrease in the
Brønsted acid sites could result in a reduction in the aromatic yield. Hence, 2%Fe-ZSM-5
with the proper amount of Brønsted and Lewis acid sites provides the highest aromatic
yield. The synergistic effect of the Brønsted acid sites and Lewis acid sites is responsible for
achieving the efficient aromatization of MF. It is thus concluded that the key to designing
an improved zeolite catalyst for MF aromatization is the introduction of large numbers of
new Lewis acid sites without a significant loss of Brønsted acid sites in ZSM-5.

Table 3. The amount of Brønsted and Lewis acid sites of Fe-ZSM-5.

Zeolite
B/L Amount of Brønsted Acid

Sites (µmol/g)
Amount of Lewis Acid

Sites (µmol/g)Total (150 ◦C) Strong (350 ◦C)

ZSM-5 1.42 2.07 596.59 420.13
0.5%Fe-ZSM-5 1.62 1.87 817.94 504.90
1%Fe-ZSM-5 1.04 1.17 662.77 637.27
2%Fe-ZSM-5 0.85 1.07 552.86 650.42
3%Fe-ZSM-5 0.61 0.73 435.70 714.27
4%Fe-ZSM-5 1.05 1.36 606.09 577.22

3. Materials and Methods
3.1. Materials

MF (C5H6O, ≥98%), iron(III) nitrate nonahydrate (Fe(NO3)3•9H2O, ≥98.5%), and
gallium nitrate hydrate (Ga(NO3)3•xH2O, ≥99.9%) were purchased from Shanghai Macklin
Biochemical Co., Ltd. Ammonium heptamolybdate ((NH4)6Mo7O24•4H2O, ≥99.0%) was
obtained from Tianjin Komiou Chemical Reagent Co., Ltd, Tianjin, China. Zinc nitrate
hexahydrate (Zn(NO3)2•6H2O, ≥99.0%) was supplied by Guangzhou Chemical Reagent
Factory, Guangdong, China. ZSM-5 (SiO2/Al2O3 = 25) was acquired from Nankai Uni-
versity Catalyst Plant Co., Ltd., Tianjin, China. The ultrapure water was homemade. All
reagents were used directly without further purification.

3.2. Catalyst Preparation

The metal-modified ZSM-5 catalysts were prepared by wet impregnation procedures
and termed as xMe-ZSM-5 (x denotes weight ratio of metal to zeolite, x = 0.5%, 1%, 2%,
3%, 4%; Me means metal, Me = Mo, Zn, Ga, or Fe). In total, 10 g of ZSM-5 zeolite was
impregnated in a 100 mL metal nitrate solution at room temperature and then rotary-
evaporated at 60 ◦C. Subsequently, the samples were dried at 105 ◦C for 12 h and then
calcined at 550 ◦C for 5 h. In the end, all of the catalysts, including raw ZSM-5, were
pelleted, crushed, and sieved into 40–60 mesh for further catalytic assessment.

3.3. CFP Experiments

The conversion of bio-derived furans was conducted in a continuous fixed bed reactor,
as shown in Figure 6. The fixed reactor was built from a 17 mm inner diameter quartz
tube. The sieved ZSM-5 particles with a size of 0.25–0.425 mm were held in the reactor
by quartz beads and quartz wool. Nitrogen (99.999%) was used as a purge gas to remove
the air in the fixed bed reactor, while argon (99.999%) was used as a carrier gas for the
internal standard of gas volume. The purge gas was set to 200 mL/min using a mass
flow meter, and the carrier gas was set to 120 mL/min. The MF was introduced into
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the argon stream using a constant flow HPLC piston pump (STI 501, Hangzhou Saizhi
Technology Co., Ltd, Hangzhou, China.). For a typical run, the flow rate of the mixtures
was adjusted to 4.0 g/h, and 1.0 g of catalysts were used in the catalyst bed. All of the
runs were performed at atmospheric pressure. A condenser at −40 ◦C and two-stage gas
washing bottles using cyclohexane as a solvent (held at 0 ◦C) were used to trap the liquid
products. After the reactions, the condenser and gas-washing bottles were washed with
cyclohexane. The liquid products in the cyclohexane were analyzed and quantified by a
TRACE 1300 gas chromatograph connected with a QD-300 mass spectrometer (GC-MS)
(Thermo Fisher Scientific, Cleveland, OH, USA). The GC column was an Agilent HP-5 (30 m
length, 0.25 mm internal diameter, and 0.25 µm film thickness). The gas phase products
were collected with airbags and analyzed by GC (Agilent 7890A, Agilent Technologies, Inc,
Santa Clara, CA, USA). The GC column was an Agilent 113-4362 GS-GASPRO (60 m length,
0.32 mm internal diameter). The coke yield was obtained by measuring the carbon content
of the spent catalyst.
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3.4. Characterization

The textural properties of catalysts were determined by N2 adsorption-desorption
isotherms (Autosorb-iQ-2, Quantachrome). Before the test, the sample was degassed under
a vacuum at 300 ◦C for 10 h. The NH3-TPD analysis of different catalysts was conducted
on an AutoChem II 2920 (Micromeritics) chemisorption analyzer following a TPD method.
For each run, the sample was heated up to 300 ◦C at a rate of 10 ◦C/min and kept for
2 h in a He flow to remove adsorbed impurities. Then, the sample was cooled down to
90 ◦C for the adsorption of NH3. After flushing with He for 1 h to remove physically
adsorbed NH3, the NH3 desorption signal was detected using a TCD detector from 90 ◦C to
800 ◦C with a ramp of 10 ◦C/min. The Fourier transform infrared spectroscopy of pyridine
adsorption (Py-FTIR) of different catalysts was obtained by a Thermo Nicolet Nexus 6700
FT-IR spectrometer equipped with a liquid nitrogen-cooled MCT detector. The wafers
(diameter 13 mm) were purged in the IR cell at 400 ◦C for 2 h under a vacuum and then
cooled down to room temperature for pyridine adsorption. Py-IR spectra were recorded
over 32 scans at a resolution of 4 cm−1 in the range of 1700 to 1400 cm−1 at 150 and 350 ◦C.
The Brønsted/Lewis acid (B/L) ratio was calculated as follows: B/L = 1.88IA(B)/1.42IA(L)
(IA(L, B), IA = integrated absorbance of L or B band.
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3.5. Methods of Data Processing

The MF conversion, the carbon yields of aromatics, oxygenates, coke, and noncon-
densable gases (alkanes, olefins, CO, and CO2), and aromatic selectivity were defined as
follows:

MF conversion =(1 − Moles of carbon of MF in the product
Moles of carbon in feedstocks

) × 100%

Aromatic yield =
Moles of carbon in aromatic products

Moles of carbon in feedstocks
× 100%

Coke yield =
Moles of carbon in spent catalysts

Moles of carbon in feedstocks
× 100%

Noncondensable gas yield =
Moles of carbon in noncondensable gas

Moles of carbon in feedstocks
× 100%

Aromatic selectivity =
Moles of carbon in specific aromatic species
Total Moles of carbon in all aromatic species

× 100%

4. Conclusions

It is demonstrated that the introduction of Zn, Mo, Fe, and Ga on ZSM-5 evidently
improves the MF conversion and the aromatic yield during the CFP of MF. Among the four
types of metal-modified ZSM-5 catalysts, 1%Fe-ZSM-5 exhibits the highest MF conversion,
while Ga-ZSM-5 affords higher aromatic yields. It is found that 2% is the optimal Fe loading
for maximizing the aromatic yield during the CFP of MF over Fe-ZSM-5. The optimal
aromatic yield of 40.03% is achieved by 2%Fe-ZSM-5 at a WHSV of 2 h−1. The NH3-TPD
and Py-FTIR characterization prove that the synergistic effect of Brønsted acid sites and
Lewis acid sites is the key to achieving the efficient aromatization of MF. The introduction
of large numbers of new Lewis acid sites without a significant loss of Brønsted acid sites on
the ZSM-5 catalyst is the guideline for the rational design of an improved zeolite catalyst
for the CFP of biomass and its derived furans.
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