Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = cAMP compartmentalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4431 KB  
Article
Molecular Imbalances Between Striosome and Matrix Compartments Characterize the Pathogenesis and Pathophysiology of Huntington’s Disease Model Mouse
by Ryoma Morigaki, Tomoko Yoshida, Joji Fujikawa, Jill R. Crittenden and Ann M. Graybiel
Int. J. Mol. Sci. 2025, 26(17), 8573; https://doi.org/10.3390/ijms26178573 - 3 Sep 2025
Viewed by 931
Abstract
The pathogenesis and pathophysiology of Huntington’s disease (HD) are still incompletely understood, despite the remarkable advances in identifying the molecular effects of the Htt mutation in this disease. Clinical positron emission tomography studies suggest that phosphodiesterase 10A (PDE10A) declines earlier than dopamine D1 [...] Read more.
The pathogenesis and pathophysiology of Huntington’s disease (HD) are still incompletely understood, despite the remarkable advances in identifying the molecular effects of the Htt mutation in this disease. Clinical positron emission tomography studies suggest that phosphodiesterase 10A (PDE10A) declines earlier than dopamine D1 and D2 receptors in HD, indicating that it might serve as a key molecular marker in understanding disease mechanisms. In movement disorders, mutations in the genes encoding PDE10A and G-protein α subunit (Gαolf), both critical cAMP regulators in striatal spiny projection neurons, have been linked to chorea and dystonia. These observations highlight the potential importance of striatal cyclic AMP (cAMP) signaling in these disorders, but how such dysfunction could come is unknown. Here, we suggest that a key to understanding signaling dysfunction might be to evaluate these messenger systems in light of the circuit-level compartmental organization of the caudoputamen, in which there is particular vulnerability of the striosome compartment in HD. We developed machine learning algorithms to define with high precision and reproducibility the borders of striosomes in the brains of Q175 knock-in (Q175KI) HD mice from 3–12 months of age. We demonstrate that the expression of multiple molecules, including Gαolf, PDE10A, dopamine D1 and D2 receptors, and adenosine A2A receptors, is significantly reduced in the striosomes of Q175KI mice as compared to wildtype controls, across 3, 6, and 12 months of age. By contrast, mu-opioid receptor (MOR1) expression is uniquely upregulated, suggesting a compartment-specific and age-dependent shift in molecular profiles in the Q175KI HD mouse model caudoputamen. These differential changes may serve as a useful platform to determine factors underlying the greater vulnerability of striatal projection neurons in the striosomes than in the matrix in HD. Full article
(This article belongs to the Special Issue Molecular Research of Dystonia and Parkinson’s Disease)
Show Figures

Figure 1

28 pages, 3566 KB  
Review
Role of PDE4 Family in Cardiomyocyte Physiology and Heart Failure
by Ivan Sherstnev, Aleksandra Judina, Giovanni Battista Luciani, Alessandra Ghigo, Emilio Hirsch and Julia Gorelik
Cells 2025, 14(6), 460; https://doi.org/10.3390/cells14060460 - 20 Mar 2025
Viewed by 2050
Abstract
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including [...] Read more.
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including the sarcoplasmic reticulum, plasma membrane and nuclear envelope. This review highlights the cardiac PDE4 isoforms PDE4A, PDE4B and PDE4D, focusing on their distinct localisation and contributions to cardiac physiology and pathophysiology, particularly in heart failure and arrhythmias. Although PDE4 plays a smaller role in overall cAMP hydrolysis in human hearts than in rodents, its compartmentalised function remains critical. Recent therapeutic advances have shifted from pan-PDE4 inhibitors to isoform-specific approaches to enhance efficacy while minimising systemic toxicity. We discuss the potential of selective PDE4 modulators, gene therapies and combination strategies in restoring cAMP compartmentation and preventing maladaptive cardiac remodelling. By integrating rodent and human studies, this review underscores the translational challenges and therapeutic opportunities surrounding PDE4, positioning it as both a key regulator of cardiac signalling and a promising target for heart failure therapies. Full article
Show Figures

Figure 1

15 pages, 1700 KB  
Article
Modeling the Transmission of ESBL and AmpC-Producing Escherichia coli in Denmark: A Compartmental and Source Attribution Approach
by Maja Lykke Brinch, Ana Sofia Ribeiro Duarte, Ofosuhene O. Apenteng and Tine Hald
Zoonotic Dis. 2025, 5(1), 7; https://doi.org/10.3390/zoonoticdis5010007 - 18 Mar 2025
Viewed by 1180
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-EC) poses a significant public health concern, with its presence increasingly detected in healthy humans and various animal species. This study explores the transmission dynamic of ESC-EC within the Danish population as well as the transmission impact of a [...] Read more.
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-EC) poses a significant public health concern, with its presence increasingly detected in healthy humans and various animal species. This study explores the transmission dynamic of ESC-EC within the Danish population as well as the transmission impact of a range of food and animal sources. We developed a compartmental model encompassing farmers, pet owners, and the general population. Additionally, we applied an established source attribution model to estimate the contributions to the transmission of different sources using Danish surveillance data on the distribution of resistance genes in E. coli. Our findings highlight the central role of human-to-human transmission while also showing the significant contributions of food and animal sources to the spread of ESC-EC in sporadic human infections. Imported food, pets, and livestock were estimated to contribute importantly to human infections. The results emphasize the complexity of ESC-EC transmission dynamics and the critical value of employing a One Health approach in modeling disease transmission and in the development of targeted intervention strategies. Full article
Show Figures

Figure 1

21 pages, 832 KB  
Review
Cyclic Adenosine Monophosphate Signaling in Chronic Kidney Disease: Molecular Targets and Therapeutic Potentials
by Charlotte Delrue, Reinhart Speeckaert, Rafael Noal Moresco and Marijn M. Speeckaert
Int. J. Mol. Sci. 2024, 25(17), 9441; https://doi.org/10.3390/ijms25179441 - 30 Aug 2024
Cited by 4 | Viewed by 3421
Abstract
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world’s population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and [...] Read more.
Chronic kidney disease (CKD) is characterized by a steady decline in kidney function and affects roughly 10% of the world’s population. This review focuses on the critical function of cyclic adenosine monophosphate (cAMP) signaling in CKD, specifically how it influences both protective and pathogenic processes in the kidney. cAMP, a critical secondary messenger, controls a variety of cellular functions, including transcription, metabolism, mitochondrial homeostasis, cell proliferation, and apoptosis. Its compartmentalization inside cellular microdomains ensures accurate signaling. In kidney physiology, cAMP is required for hormone-regulated activities, particularly in the collecting duct, where it promotes water reabsorption through vasopressin signaling. Several illnesses, including Fabry disease, renal cell carcinoma, nephrogenic diabetes insipidus, Bartter syndrome, Liddle syndrome, diabetic nephropathy, autosomal dominant polycystic kidney disease, and renal tubular acidosis, have been linked to dysfunction in the cAMP system. Both cAMP analogs and phosphodiesterase inhibitors have the potential to improve kidney function and reduce kidney damage. Future research should focus on developing targeted PDE inhibitors for the treatment of CKD. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Regulation in Chronic Kidney Diseases)
Show Figures

Figure 1

5 pages, 185 KB  
Editorial
Role of Phosphodiesterases in Biology and Pathology 2.0
by Mauro Giorgi, Manuela Pellegrini and Mara Massimi
Int. J. Mol. Sci. 2024, 25(10), 5339; https://doi.org/10.3390/ijms25105339 - 14 May 2024
Cited by 1 | Viewed by 1846
Abstract
Phosphodiesterases (PDEs) are ubiquitous enzymes that hydrolyse cAMP and cGMP second messengers temporally, spatially, and integratedly according to their expression and compartmentalization inside the cell [...] Full article
(This article belongs to the Special Issue Role of Phosphodiesterase in Biology and Pathology 2.0)
25 pages, 3813 KB  
Article
The Sleep Quality- and Myopia-Linked PDE11A-Y727C Variant Impacts Neural Physiology by Reducing Catalytic Activity and Altering Subcellular Compartmentalization of the Enzyme
by Irina Sbornova, Emilie van der Sande, Snezana Milosavljevic, Elvis Amurrio, Steven D. Burbano, Prosun K. Das, Helen H. Do, Janet L. Fisher, Porschderek Kargbo, Janvi Patel, Latarsha Porcher, Chris I. De Zeeuw, Magda A. Meester-Smoor, Beerend H. J. Winkelman, Caroline C. W. Klaver, Ana Pocivavsek and Michy P. Kelly
Cells 2023, 12(24), 2839; https://doi.org/10.3390/cells12242839 - 14 Dec 2023
Cited by 4 | Viewed by 2431
Abstract
Recently, a Y727C variant in the dual-specific 3′,5′-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined [...] Read more.
Recently, a Y727C variant in the dual-specific 3′,5′-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if (1) PDE11A protein is expressed in the retina or other eye segments in mice, (2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and (3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT, but not KO mice, that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness or axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia. Full article
Show Figures

Figure 1

19 pages, 1289 KB  
Review
PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets
by Lídia Puertas-Umbert, Judith Alonso, Leif Hove-Madsen, José Martínez-González and Cristina Rodríguez
Int. J. Mol. Sci. 2023, 24(23), 17017; https://doi.org/10.3390/ijms242317017 - 30 Nov 2023
Cited by 8 | Viewed by 3837
Abstract
3′,5′-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a [...] Read more.
3′,5′-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

29 pages, 3081 KB  
Review
Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling
by Duangnapa Kovanich, Teck Yew Low and Manuela Zaccolo
Int. J. Mol. Sci. 2023, 24(5), 4667; https://doi.org/10.3390/ijms24054667 - 28 Feb 2023
Cited by 5 | Viewed by 3177
Abstract
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by [...] Read more.
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions. Full article
(This article belongs to the Special Issue Quantitative Proteomics in Precision Medicine)
Show Figures

Figure 1

11 pages, 2717 KB  
Article
Distinct PKA Signaling in Cytosolic and Mitochondrial Compartments in Electrically Paced Atrial Myocytes
by Noa Kirschner Peretz, Sofia Segal, Ido Weiser-Bitoun and Yael Yaniv
Cells 2022, 11(14), 2261; https://doi.org/10.3390/cells11142261 - 21 Jul 2022
Cited by 2 | Viewed by 2636
Abstract
Protein kinase A (PKA) is a key nodal signaling molecule that regulates a wide range of cellular functions in the cytosol and mitochondria. The distribution of A-kinase anchoring proteins that tether PKA, the local interaction with degradation molecules, and regulation by Ca2+ [...] Read more.
Protein kinase A (PKA) is a key nodal signaling molecule that regulates a wide range of cellular functions in the cytosol and mitochondria. The distribution of A-kinase anchoring proteins that tether PKA, the local interaction with degradation molecules, and regulation by Ca2+, may lead to distinct spatiotemporal cAMP/PKA signaling in these compartments. In this work, FRET-based sensors were used to investigate PKA signaling in the cytosol, outer mitochondrial membrane (OMM), and mitochondrial matrix (MM) and its crosstalk with Ca2+ in response to electrical stimulation of cultured rabbit atrial cells. A gradual decrease in PKA activity eliminating the ability of the atrial cells to respond to physiological electrical stimulation, was observed upon treatment of cells with H-89. Chelation of intracellular Ca2+ by BAPTA reduced PKA activity and diminished its response to forskolin, an AC stimulator. Under basal conditions, PKA activity in response to forskolin was lower in the OMM compared to the cytosol and MM. In response to electrical stimulation in the presence of ISO, distinct compartmentalization of PKA activity was observed, with higher activity in the cytosol and MM than in the OMM. Thus, distinct Ca2+-dependent spatiotemporal cAMP/PKA signaling exists in atrial cells, likely mediating its excitation and mitochondrial function. Full article
(This article belongs to the Special Issue Cyclic AMP/PKA/Epac Signaling in Health and Disease)
Show Figures

Figure 1

24 pages, 4283 KB  
Review
Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts
by Gaia Calamera, Lise Román Moltzau, Finn Olav Levy and Kjetil Wessel Andressen
Int. J. Mol. Sci. 2022, 23(4), 2145; https://doi.org/10.3390/ijms23042145 - 15 Feb 2022
Cited by 36 | Viewed by 8489
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic [...] Read more.
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure. Full article
(This article belongs to the Special Issue Role of Phosphodiesterase in Biology and Pathology 2.0)
Show Figures

Figure 1

32 pages, 2127 KB  
Review
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective
by Margarida Lorigo, Nelson Oliveira and Elisa Cairrao
J. Cardiovasc. Dev. Dis. 2022, 9(1), 4; https://doi.org/10.3390/jcdd9010004 - 22 Dec 2021
Cited by 22 | Viewed by 6212
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic [...] Read more.
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Figure 1

17 pages, 2156 KB  
Article
Abnormal Calcium Handling in Atrial Fibrillation Is Linked to Changes in Cyclic AMP Dependent Signaling
by Franziska Reinhardt, Kira Beneke, Nefeli Grammatica Pavlidou, Lenard Conradi, Hermann Reichenspurner, Leif Hove-Madsen and Cristina E. Molina
Cells 2021, 10(11), 3042; https://doi.org/10.3390/cells10113042 - 5 Nov 2021
Cited by 23 | Viewed by 4563
Abstract
Both, the decreased L-type Ca2+ current (ICa,L) density and increased spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), have been associated with atrial fibrillation (AF). In this study, we tested the hypothesis that remodeling of 3′,5′-cyclic adenosine monophosphate (cAMP)-dependent [...] Read more.
Both, the decreased L-type Ca2+ current (ICa,L) density and increased spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), have been associated with atrial fibrillation (AF). In this study, we tested the hypothesis that remodeling of 3′,5′-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) signaling is linked to these compartment-specific changes (up- or down-regulation) in Ca2+-handling. Perforated patch-clamp experiments were performed in atrial myocytes from 53 patients with AF and 104 patients in sinus rhythm (Ctl). A significantly higher frequency of transient inward currents (ITI) activated by spontaneous Ca2+ release was confirmed in myocytes from AF patients. Next, inhibition of PKA by H-89 promoted a stronger effect on the ITI frequency in these myocytes compared to myocytes from Ctl patients (7.6-fold vs. 2.5-fold reduction), while the β-agonist isoproterenol (ISO) caused a greater increase in Ctl patients (5.5-fold vs. 2.1-fold). ICa,L density was larger in myocytes from Ctl patients at baseline (p < 0.05). However, the effect of ISO on ICa,L density was only slightly stronger in AF than in Ctl myocytes (3.6-fold vs. 2.7-fold). Interestingly, a significant reduction of ICa,L and Ca2+ sparks was observed upon Ca2+/Calmodulin-dependent protein kinase II inhibition by KN-93, but this inhibition had no effect on ITI. Fluorescence resonance energy transfer (FRET) experiments showed that although AF promoted cytosolic desensitization to β-adrenergic stimulation, ISO increased cAMP to similar levels in both groups of patients in the L-type Ca2+ channel and ryanodine receptor compartments. Basal cAMP signaling also showed compartment-specific regulation by phosphodiesterases in atrial myocytes from 44 Ctl and 43 AF patients. Our results suggest that AF is associated with opposite changes in compartmentalized PKA/cAMP-dependent regulation of ICa,L (down-regulation) and ITI (up-regulation). Full article
(This article belongs to the Special Issue Electrical Remodeling in Cardiac Disease)
Show Figures

Figure 1

23 pages, 4849 KB  
Article
Identification and Characterization of an Affimer Affinity Reagent for the Detection of the cAMP Sensor, EPAC1
by Hanna K. Buist, Urszula Luchowska-Stańska, Boy van Basten, Jessica Valli, Brian O. Smith, George S. Baillie, Colin Rickman, Bryon Ricketts, Alex Davidson, Ryan Hannam, Joanne Sunderland and Stephen J. Yarwood
Cells 2021, 10(9), 2307; https://doi.org/10.3390/cells10092307 - 3 Sep 2021
Cited by 1 | Viewed by 4271
Abstract
An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. [...] Read more.
An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. Here, we use non-antibody Affimer protein scaffolds to develop isoform-selective protein binders of EPAC1. Phage-display screens were carried out against purified, biotinylated human recombinant EPAC1ΔDEP protein (amino acids 149–811), which identified five potential EPAC1-selective Affimer binders. Dot blots and indirect ELISA assays were next used to identify Affimer 780A as the top EPAC1 binder. Mutagenesis studies further revealed a potential interaction site for 780A within the EPAC1 cyclic nucleotide binding domain (CNBD). In addition, 780A was shown to co-precipitate EPAC1 from transfected cells and co-localize with both wild-type EPAC1 and a mis-targeting mutant of EPAC1(K212R), predominantly in perinuclear and cytosolic regions of cells, respectively. As a novel EPAC1-selective binder, 780A therefore has the potential to be used in future studies to further understand compartmentalization of the cAMP-EPAC1 signaling system. Full article
Show Figures

Figure 1

23 pages, 2148 KB  
Review
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer’s Disease
by Dolores Viña, Nuria Seoane, Elisardo C. Vasquez and Manuel Campos-Toimil
Cells 2021, 10(8), 1951; https://doi.org/10.3390/cells10081951 - 31 Jul 2021
Cited by 32 | Viewed by 6136
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays [...] Read more.
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD. Full article
(This article belongs to the Collection Compartmentilisation of Cellular Signaling)
Show Figures

Figure 1

26 pages, 1900 KB  
Review
Endoplasmic Reticulum‐Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling
by Tim Crul and József Maléth
Int. J. Mol. Sci. 2021, 22(9), 4703; https://doi.org/10.3390/ijms22094703 - 29 Apr 2021
Cited by 17 | Viewed by 7826
Abstract
In eukaryotic cells, ultimate specificity in activation and action—for example, by means of second messengers—of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple—sometimes opposite—cellular [...] Read more.
In eukaryotic cells, ultimate specificity in activation and action—for example, by means of second messengers—of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple—sometimes opposite—cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER–PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field. Full article
Show Figures

Graphical abstract

Back to TopTop