Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = c-fos mRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8884 KB  
Article
Pharmacological Preconditioning with Diazoxide Upregulates HCN4 Channels in the Sinoatrial Node of Adult Rat Cardiomyocytes
by Wilibaldo Orea, Elba D. Carrillo, Ascención Hernández, Rubén Moreno, María C. García and Jorge A. Sánchez
Int. J. Mol. Sci. 2025, 26(13), 6062; https://doi.org/10.3390/ijms26136062 - 24 Jun 2025
Viewed by 460
Abstract
Cardioprotection against ischemia is achieved using openers of mitochondrial ATP-sensitive K+ (mitoKATP) channels such as diazoxide (DZX), leading to pharmacological preconditioning (PPC). We previously reported that PPC decreases the abundance of ventricular Cav1.2 channels, but PPC’s effects on other channels remain largely [...] Read more.
Cardioprotection against ischemia is achieved using openers of mitochondrial ATP-sensitive K+ (mitoKATP) channels such as diazoxide (DZX), leading to pharmacological preconditioning (PPC). We previously reported that PPC decreases the abundance of ventricular Cav1.2 channels, but PPC’s effects on other channels remain largely unexplored. In this study, we hypothesized that DZX regulates the expression of hyperpolarization-activated cyclic nucleotide potassium channel 4 (HCN4) channels in sinoatrial node cells (SANCs), the specialized cardiomyocytes that generate the heartbeat. DZX increased the heart rate in intact adult rats. Patch-clamp experiments revealed an increase in the magnitude of ionic currents through HCN4 channels, which was abolished by the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the selective mitoKATP channel inhibitor 5-hydroxydecanoate (5-HD). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot assays showed that DZX increased HCN4 channel expression at the mRNA and protein levels. Immunofluorescence analyses revealed that PPC increased HCN4 fluorescence, which was abolished by NAC. DZX increased nuclear translocation of c-Fos and decreased protein abundance of RE1 silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), suggesting the involvement of these factors. Our results suggest that PPC increases the heart rate by upregulating HCN4 channel expression through a mechanism involving c-Fos, REST, and ROS. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

17 pages, 2639 KB  
Article
Inhibition of Thioredoxin Reductase Activity and Oxidation of Cellular Thiols by Antimicrobial Agent, 2-Bromo-2-nitro-1,3-propanediol, Causes Oxidative Stress and Cell Death in Cultured Noncancer and Cancer Cells
by Chao Jiang, Gary Krzyzanowski, Dinesh S. Chandel, Wesley A. Tom, Nirmalee Fernando, Appolinaire Olou and M. Rohan Fernando
Biology 2025, 14(5), 509; https://doi.org/10.3390/biology14050509 - 6 May 2025
Viewed by 714
Abstract
Background: The thioredoxin system (TrxS) is crucial for maintaining redox balance by regulating cellular thiol levels and is involved in various biological processes, including cancer progression. Thioredoxin reductase (TrxR), a key component of TrxS, reduces oxidized thioredoxin (Trx) using NADPH. This study investigates [...] Read more.
Background: The thioredoxin system (TrxS) is crucial for maintaining redox balance by regulating cellular thiol levels and is involved in various biological processes, including cancer progression. Thioredoxin reductase (TrxR), a key component of TrxS, reduces oxidized thioredoxin (Trx) using NADPH. This study investigates the inhibitory effects of 2-bromo-2-nitro-1,3-propanediol (Bronopol, BP), a preservative, on TrxR activity and its impact on cellular thiols and cell viability. Methods: Purified recombinant TrxR and noncancer and cancer cells were treated with different concentrations of BP and TrxR activity measured. BP-treated cells were examined for effects of BP on total cellular thiol level and GSH/GSSG ratio. Results: BP effectively inhibited TrxR in a dose-dependent manner, an effect that was reversible with dithiothreitol (DTT). BP treatment significantly reduced total thiol levels, decreased the GSH/GSSG ratio, and increased reactive oxygen species (ROS) in cells. Additionally, BP decreased cell viability and induced apoptosis, as indicated by morphological changes and increased c-fos mRNA expression. Conclusions: These findings highlight BP’s potential as a TrxR inhibitor and its cytotoxicity toward both noncancer and cancer cells. The observed effects—TrxR inhibition, thiol oxidation, GSH/GSSG imbalance, and ROS accumulation—may underlie BP’s cytotoxicity. Further research is needed to explore the precise molecular mechanisms by which BP exerts these effects. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

14 pages, 2022 KB  
Article
Male-Dominant Spinal Microglia Contribute to Neuropathic Pain by Producing CC-Chemokine Ligand 4 Following Peripheral Nerve Injury
by Fumihiro Saika, Tetsuya Sato, Takeru Nakabayashi, Yohji Fukazawa, Shinjiro Hino, Kentaro Suzuki and Norikazu Kiguchi
Cells 2025, 14(7), 484; https://doi.org/10.3390/cells14070484 - 23 Mar 2025
Cited by 1 | Viewed by 3658
Abstract
Recent studies have revealed marked sex differences in pathophysiological roles of spinal microglia in neuropathic pain, with microglia contributing to pain exacerbation exclusively in males. However, the characteristics of pain-enhancing microglia, which are more prominent in males, remain poorly understood. Here, we reanalyzed [...] Read more.
Recent studies have revealed marked sex differences in pathophysiological roles of spinal microglia in neuropathic pain, with microglia contributing to pain exacerbation exclusively in males. However, the characteristics of pain-enhancing microglia, which are more prominent in males, remain poorly understood. Here, we reanalyzed a previously published single-cell RNA sequencing dataset and identified a microglial subpopulation that significantly increases in the spinal dorsal horn (SDH) of male mice following peripheral nerve injury. CC-chemokine ligand 4 (CCL4) was highly expressed in this subpopulation and its mRNA levels were increased in the SDH after partial sciatic nerve ligation (PSL) only in male mice. Notably, CCL4 expression was reduced in male mice following microglial depletion, indicating that microglia are the primary source of CCL4. Intrathecal administration of maraviroc, an inhibitor of the CCL4–CC-chemokine receptor 5 (CCR5) signaling pathway, after PSL, significantly suppressed mechanical allodynia only in male mice. Furthermore, intrathecal administration of CCL4 induced mechanical allodynia in both sexes, accompanied by increased expression of c-fos, a neuronal excitation marker, in the SDH. These findings highlight a sex-biased difference in the gene expression profile of spinal microglia following peripheral nerve injury, with elevated CCL4 expression in male mice potentially contributing to pain exacerbation. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

17 pages, 3942 KB  
Article
Noradrenaline Synergistically Enhances Porphyromonas gingivalis LPS and OMV-Induced Interleukin-1β Production in BV-2 Microglia Through Differential Mechanisms
by Sakura Muramoto, Sachi Shimizu, Sumika Shirakawa, Honoka Ikeda, Sayaka Miyamoto, Misato Jo, Uzuki Takemori, Chiharu Morimoto, Zhou Wu, Hidetoshi Tozaki-Saitoh, Kosuke Oda, Erika Inoue, Saori Nonaka and Hiroshi Nakanishi
Int. J. Mol. Sci. 2025, 26(6), 2660; https://doi.org/10.3390/ijms26062660 - 15 Mar 2025
Cited by 3 | Viewed by 1273
Abstract
Infection with Porphyromonas gingivalis (Pg), which is a major periodontal pathogen, causes a large number of systemic diseases based on chronic inflammation such as diabetes and Alzheimer’s disease (AD). However, it is not yet fully understood how Pg can augment local [...] Read more.
Infection with Porphyromonas gingivalis (Pg), which is a major periodontal pathogen, causes a large number of systemic diseases based on chronic inflammation such as diabetes and Alzheimer’s disease (AD). However, it is not yet fully understood how Pg can augment local systemic immune and inflammatory responses during progression of AD. There is a strong association between depression and elevated levels of inflammation. Noradrenaline (NA) is a key neurotransmitter that modulates microglial activation during stress conditions. In this study, we have thus investigated the regulatory mechanisms of NA on the production of interleukin-1β (IL-1β) by microglia following stimulation with Pg virulence factors, lipopolysaccharide (LPS), and outer membrane vesicles (OMVs). NA (30–1000 nM) significantly enhanced the mRNA level, promoter activity, and protein level of IL-1β up to 20-fold in BV-2 microglia following treatment with Pg LPS (10 μg/mL) and OMVs (150 μg of protein/mL) in a dose-dependent manner. Pharmacological studies have suggested that NA synergistically augments the responses induced by Pg LPS and OMVs through different mechanisms. AP-1 is activated by the β2 adrenergic receptor (Aβ2R)-mediated pathway. NF-κB, which is activated by the Pg LPS/toll-like receptor 2-mediated pathway, is required for the synergistic effect of NA on the Pg LPS-induced IL-1β production by BV-2 microglia. Co-immunoprecipitation combined with Western blotting and the structural models generated by AlphaFold2 suggested that cross-coupling of NF-κB p65 and AP-1 c-Fos transcription factors enhances the binding of NF-κB p65 to the IκB site, resulting in the synergistic augmentation of the IL-1β promoter activity. In contrast, OMVs were phagocytosed by BV-2 microglia and then activated the TLR9/p52/RelB-mediated pathway. The Aβ2R/Epac-mediated pathway, which promotes phagosome maturation, may be responsible for the synergistic effect of NA on the OMV-induced production of IL-1β in BV-2 microglia. Our study provides the first evidence that NA synergistically enhances the production of IL-1β in response to Pg LPS and OMVs through distinct mechanisms. Full article
(This article belongs to the Special Issue Physiological Functions and Pathological Effects of Microglia)
Show Figures

Figure 1

20 pages, 2651 KB  
Article
Alterations in Blood and Hippocampal mRNA and miRNA Expression, Along with Fat Deposition in Female B6C3F1 Mice Continuously Exposed to Prenatal Low-Dose-Rate Radiation and Their Comparison with Male Mice
by Hong Wang, Ignacia Braga Tanaka, Salihah Lau, Satoshi Tanaka, Amanda Tan and Feng Ru Tang
Cells 2025, 14(3), 173; https://doi.org/10.3390/cells14030173 - 23 Jan 2025
Viewed by 1202
Abstract
Our recent study revealed that continuous prenatal low-dose-rate irradiation did not induce cellular changes in the dentate gyrus of the hippocampus in male B6C3F1 mice exposed to gamma rays during prenatal development. However, changes in body weight, body mass index (BMI), locomotor ability, [...] Read more.
Our recent study revealed that continuous prenatal low-dose-rate irradiation did not induce cellular changes in the dentate gyrus of the hippocampus in male B6C3F1 mice exposed to gamma rays during prenatal development. However, changes in body weight, body mass index (BMI), locomotor ability, and mRNA and miRNA expressions in the hippocampus and blood were observed. To investigate potential sex differences in the effects of prenatal gamma irradiation, we conducted a parallel study on female B6C3F1 mice. The results showed significant reductions in the weight of the lungs and left kidney in prenatally irradiated female offspring, accompanied by significantly increased fat deposits in the mesentery, retroperitoneal, and left perigonadal areas. Despite these systemic changes, no cellular alterations were observed in the subgranular zone (immature neurons) or the hilus of the dentate gyrus (mature neurons and glial cells, including astrocytes, microglia, and oligodendrocyte progenitor cells). However, significant increases in hippocampal mRNA expression were detected for genes such as H2bc24, Fos, Cd74, Tent5a, Traip, and Sap25. Conversely, downregulation of mRNAs Inpp5j and Gdf3 was observed in whole blood. A Venn diagram highlighted the differential expression of two mRNAs, Ttn and Slc43a3, between the hippocampus and whole blood. Comparisons between prenatally irradiated male and female B6C3F1 mice revealed sex-specific differences. In whole blood, 4 mRNAs (Scd1, Cd59b, Vmn1r58, and Gm42427) and 1 miRNA (mmu-miR-8112) exhibited differential expression. In the hippocampus, 12 mRNAs and 2 novel miRNAs were differentially expressed between the sexes. qRT-PCR analysis validated the upregulation of H2bc24, Fos, Cd74, and Tent5a in the female hippocampus. These gene expression changes may be associated with the increased fat deposition observed following chronic low-dose-rate gamma irradiation exposure. This study underscores the importance of investigating sex-specific biological responses to prenatal gamma irradiation and highlights potential molecular pathways linked to observed physiological changes. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

16 pages, 5341 KB  
Article
Sex Differences in the Neuroendocrine Stress Response: A View from a CRH-Reporting Mouse Line
by Krisztina Horváth, Pál Vági, Balázs Juhász, Dániel Kuti, Szilamér Ferenczi and Krisztina J. Kovács
Int. J. Mol. Sci. 2024, 25(22), 12004; https://doi.org/10.3390/ijms252212004 - 8 Nov 2024
Viewed by 1951
Abstract
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in [...] Read more.
Corticotropin-releasing hormone (CRH) neurons within the paraventricular hypothalamic nucleus (PVH) play a crucial role in initiating the neuroendocrine response to stress and are also pivotal in coordination of autonomic, metabolic, and behavioral stress reactions. Although the role of parvocellular CRHPVH neurons in activation of the hypothalamic–pituitary–adrenal (HPA) axis is well established, the distribution and function of CRH-expressing neurons across the whole central nervous system are less understood. Stress responses activate complex neural networks, which differ depending on the type of stressor and on the sex of the individual. Because of the technical difficulties of localizing CRH neurons throughout the rodent brain, several CRH reporter mouse lines have recently been developed. In this study, we used Crh-IRES-Cre;Ai9 reporter mice to examine whether CRH neurons are recruited in a stressor- or sex-specific manner, both within and outside the hypothalamus. In contrast to the clear sexual dimorphism of CRH-mRNA-expressing neurons, quantification of CRH-reporting, tdTomato-positive neurons in different stress-related brain areas revealed only subtle differences between male and female subjects. These results strongly imply that sex differences in CRH mRNA expression occur later in development under the influence of sex steroids and reflects the limitations of using genetic reporter constructs to reveal the current physiological/transcriptional status of a specific neuron population. Next, we compared the recruitment of stress-related, tdTomato-expressing (putative CRH) neurons in male and female Crh-IRES-Cre;Ai9 reporter mice that had been exposed to predator odor. In male mice, fox odor triggered more c-Fos in the CRH neurons of the paraventricular hypothalamic nucleus, central amygdala, and anterolateral bed nucleus of the stria terminalis compared to females. These results indicate that male mice are more sensitive to predator exposure due to a combination of hormonal, environmental, and behavioral factors. Full article
(This article belongs to the Special Issue Emerging Molecular Views in Neuroendocrinology)
Show Figures

Figure 1

27 pages, 6573 KB  
Article
CDNF Exerts Anxiolytic, Antidepressant-like, and Procognitive Effects and Modulates Serotonin Turnover and Neuroplasticity-Related Genes
by Anton Tsybko, Dmitry Eremin, Tatiana Ilchibaeva, Nikita Khotskin and Vladimir Naumenko
Int. J. Mol. Sci. 2024, 25(19), 10343; https://doi.org/10.3390/ijms251910343 - 26 Sep 2024
Viewed by 1350
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor because it does not bind to a known specific receptor on the plasma membrane and functions primarily as an unfolded protein response (UPR) regulator in the endoplasmic reticulum. Data on the effects of [...] Read more.
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor because it does not bind to a known specific receptor on the plasma membrane and functions primarily as an unfolded protein response (UPR) regulator in the endoplasmic reticulum. Data on the effects of CDNF on nonmotor behavior and monoamine metabolism are limited. Here, we performed the intracerebroventricular injection of a recombinant CDNF protein at doses of 3, 10, and 30 μg in C57BL/6 mice. No adverse effects of the CDNF injection on feed and water consumption or locomotor activity were observed for 3 days afterwards. Decreases in body weight and sleep duration were transient. CDNF-treated animals demonstrated improved performance on the operant learning task and a substantial decrease in anxiety and behavioral despair. CDNF in all the doses enhanced serotonin (5-HT) turnover in the murine frontal cortex, hippocampus, and midbrain. This alteration was accompanied by changes in the mRNA levels of the 5-HT1A and 5-HT7 receptors and in monoamine oxidase A mRNA and protein levels. We found that CDNF dramatically increased c-Fos mRNA levels in all investigated brain areas but elevated the phosphorylated-c-Fos level only in the midbrain. Similarly, enhanced CREB phosphorylation was found in the midbrain in experimental animals. Additionally, the upregulation of a spliced transcript of XBP1 (UPR regulator) was detected in the midbrain and frontal cortex. Thus, we can hypothesize that exogenous CDNF modulates the UPR pathway and overall neuronal activation and enhances 5-HT turnover, thereby affecting learning and emotion-related behavior. Full article
(This article belongs to the Special Issue Role of Serotonin in Brain Function)
Show Figures

Figure 1

15 pages, 5362 KB  
Article
Nebulized Lipopolysaccharide Causes Delayed Cortical Neuroinflammation in a Murine Model of Acute Lung Injury
by Katharina Ritter, René Rissel, Miriam Renz, Alexander Ziebart, Michael K. E. Schäfer and Jens Kamuf
Int. J. Mol. Sci. 2024, 25(18), 10117; https://doi.org/10.3390/ijms251810117 - 20 Sep 2024
Cited by 1 | Viewed by 1835
Abstract
Lung injury caused by respiratory infection is a major cause of hospitalization and mortality and a leading origin of sepsis. Sepsis-associated encephalopathy and delirium are frequent complications in patients with severe lung injury, yet the pathogenetic mechanisms remain unclear. Here, 70 female C57BL/6 [...] Read more.
Lung injury caused by respiratory infection is a major cause of hospitalization and mortality and a leading origin of sepsis. Sepsis-associated encephalopathy and delirium are frequent complications in patients with severe lung injury, yet the pathogenetic mechanisms remain unclear. Here, 70 female C57BL/6 mice were subjected to a single full-body-exposure with nebulized lipopolysaccharide (LPS). Neuromotor impairment was assessed repeatedly and brain, blood, and lung samples were analyzed at survival points of 24 h, 48 h, 72 h, and 96 h after exposure. qRT-PCR revealed increased mRNA-expression of TNFα and IL-1β 24 h and 48 h after LPS-exposure in the lung, concomitantly with increased amounts of proteins in bronchoalveolar lavage and interstitial lung edema. In the cerebral cortex, at 72 h and/or 96 h after LPS exposure, the inflammation- and activity-associated markers TLR4, GFAP, Gadd45b, c-Fos, and Arc were increased. Therefore, single exposure to nebulized LPS not only triggers an early inflammatory reaction in the lung but also induces a delayed neuroinflammatory response. The identified mechanisms provide new insights into the pathogenesis of sepsis-associated encephalopathy and might serve as targets for future therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Relationships between Brain and Lung Diseases)
Show Figures

Graphical abstract

14 pages, 3108 KB  
Article
Sex Differences in Expression of Pro-Inflammatory Markers and miRNAs in a Mouse Model of CVB3 Myocarditis
by Misael Estepa, Maximilian H. Niehues, Olesya Vakhrusheva, Natalie Haritonow, Yury Ladilov, Maria Luisa Barcena and Vera Regitz-Zagrosek
Int. J. Mol. Sci. 2024, 25(17), 9666; https://doi.org/10.3390/ijms25179666 - 6 Sep 2024
Cited by 1 | Viewed by 1690
Abstract
Myocarditis is an inflammatory disease that may lead to dilated cardiomyopathy. Viral infection of the myocardium triggers immune responses, which involve, among others, macrophage infiltration, oxidative stress, expression of pro-inflammatory cytokines, and microRNAs (miRNAs). The cardioprotective role of estrogen in myocarditis is well [...] Read more.
Myocarditis is an inflammatory disease that may lead to dilated cardiomyopathy. Viral infection of the myocardium triggers immune responses, which involve, among others, macrophage infiltration, oxidative stress, expression of pro-inflammatory cytokines, and microRNAs (miRNAs). The cardioprotective role of estrogen in myocarditis is well documented; however, sex differences in the miRNA expression in chronic myocarditis are still poorly understood, and studying them further was the aim of the present study. Male and female ABY/SnJ mice were infected with CVB3. Twenty-eight days later, cardiac tissue from both infected and control mice was used for real-time PCR and Western blot analysis. NFκB, IL-6, iNOS, TNF-α, IL-1β, MCP-1, c-fos, and osteopontin (OPN) were used to examine the inflammatory state in the heart. Furthermore, the expression of several inflammation- and remodeling-related miRNAs was analyzed. NFκB, IL-6, TNF-α, IL-1β, iNOS, and MCP-1 were significantly upregulated in male mice with CVB3-induced chronic myocarditis, whereas OPN mRNA expression was increased only in females. Further analysis revealed downregulation of some anti-inflammatory miRNA in male hearts (let7a), with upregulation in female hearts (let7b). In addition, dysregulation of remodeling-related miRNAs (miR27b and mir199a) in a sex-dependent manner was observed. Taken together, the results of the present study suggest a sex-specific expression of pro-inflammatory markers as well as inflammation- and remodeling-related miRNAs, with a higher pro-inflammatory response in male CVB3 myocarditis mice. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 6927 KB  
Article
Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity
by María Fernanda Prado-Fernández, Víctor Manuel Magdaleno-Madrigal, Emmanuel Cabañas-García, Samuel Mucio-Ramírez, Salvador Almazán-Alvarado, Eugenio Pérez-Molphe-Balch, Yenny Adriana Gómez-Aguirre and Edith Sánchez-Jaramillo
Curr. Issues Mol. Biol. 2024, 46(7), 6885-6902; https://doi.org/10.3390/cimb46070411 - 3 Jul 2024
Cited by 1 | Viewed by 1910
Abstract
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in [...] Read more.
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood–brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal. Full article
(This article belongs to the Special Issue Bioactive Molecules: Structure-Activity Relationship)
Show Figures

Graphical abstract

17 pages, 7549 KB  
Article
Genome-Wide Identification and Expression Analysis of the YTH Domain-Containing RNA-Binding Protein Family in Cinnamomum camphora
by Jingjing Zhang, Sheng Yao, Xiang Cheng, Yulu Zhao, Wenya Yu, Xingyue Ren, Kongshu Ji and Qiong Yu
Int. J. Mol. Sci. 2024, 25(11), 5960; https://doi.org/10.3390/ijms25115960 - 29 May 2024
Cited by 5 | Viewed by 2168
Abstract
N6-methyladenosine (m6A) is one of the most abundant chemical modifications on mRNA in eukaryotes. RNA-binding proteins containing the YT521-B (YTH) domain play crucial roles in post-transcriptional regulation of plant growth, development, and stress response by reading the m6 [...] Read more.
N6-methyladenosine (m6A) is one of the most abundant chemical modifications on mRNA in eukaryotes. RNA-binding proteins containing the YT521-B (YTH) domain play crucial roles in post-transcriptional regulation of plant growth, development, and stress response by reading the m6A mark. However, the YTH domain-containing RNA-binding protein family has not been studied in a valuable and medicinal tree such as Cinnamomum camphora (C. camphora) yet. In this study, we identified 10 YTH genes in C. camphora, located on eight out of 12 chromosomes. Phylogenetic analysis revealed that these genes can be classified into two major classes, YTHDF (CcDF) and YTHDC (CcDC). Closely related CcYTHs within the same class exhibited a similar distribution of conserved motifs and domain organization, suggesting functional similarities among these closely related CcYTHs. All CcYTH proteins possessed a highly conserved YTH domain, with CcDC1A containing an additional CCCH domain. The liquid–liquid phase separation (LLPS) predictions indicate that CcDC1A, CcDF1A, CcDF1C, CcDF3C, CcDF4C, and CcDF5C may undergo phase transitions. Quantitative expression analysis revealed that tissue-specific expression was observed fo CcYTHs. Notably, there were two genes, CcDF1A and CcDF5C; both exhibited significantly higher expression levels in various tissues than other genes, indicating that the m6A-YTH regulatory network in C. camphora might be quite distinct from that in most plants such as Arabidopsis thaliana (A. thaliana) with only one abundant YTH protein. According to the analysis of the up-stream cis-regulatory elements of these YTH genes, these genes could be closely related to stress, hormones, and development. The following stress response experiments further verified that their expression levels indeed changed under both PEG and NaCl treatments. These findings not only provide a foundation for future functional analysis of CcYTHs in C. camphora, but also provide insights into the functions of epigenetic mark m6A in forest trees. Full article
(This article belongs to the Special Issue Latest Epigenetic Research in Plants)
Show Figures

Figure 1

17 pages, 342 KB  
Article
Dietary High Levels of Coconut Oil Replacing Fish Oil Did Not Affect Growth, but Promoted Liver Lipid Deposition of Orange-Spotted Groupers (Epinephelus coioides)
by Kun Wang, Tao Song, Liner Ke, Yunzhang Sun and Jidan Ye
Animals 2024, 14(11), 1534; https://doi.org/10.3390/ani14111534 - 22 May 2024
Cited by 3 | Viewed by 1648
Abstract
In this study, we conducted an 8-week feeding trial to investigate the effects of replacing fish oil (FO) with coconut oil (CO) on the growth performance, blood components, tissue fatty acid (FA) profile, and mRNA levels of genes related to lipid metabolism in [...] Read more.
In this study, we conducted an 8-week feeding trial to investigate the effects of replacing fish oil (FO) with coconut oil (CO) on the growth performance, blood components, tissue fatty acid (FA) profile, and mRNA levels of genes related to lipid metabolism in the liver of the orange-spotted grouper (Epinephelus coioides). Five isolipidic and isoproteic diets were formulated through increasing the CO levels (0, 25%, 50%, 75%, and 100%, respectively). Triplicate groups of twenty-five fish (initial wet weight of about 22.4 g/fish) were fed one of the diets twice daily to apparent satiety. The 25% CO diet had the highest growth rate and feed utilization, and the 100% CO diet exhibited a comparable growth and feed utilization with that of the control diet, indicating a suitable FO substitute. Moreover, the hepatosomatic index, intraperitoneal fat rate, liver lipid content, as well as the serum HDL-C content and ALT activity had positive linear and/or quadratic responses, but the serum TC and LDL-C contents exhibited the opposite trend, with an increasing CO inclusion level. The FA profile in the liver and muscle generally mirrored the FA profile in the feed. Furthermore, the mRNA levels of the fas, acc, g6pd, srebp-1c, and δ6fad genes in the liver had positive linear and/or quadratic responses, but the mRNA levels of elovl 4 and elovl 5 had the opposite trend, with increasing dietary CO inclusion levels. When compared with the control diet, 25% and 50% CO diets up-regulated the mRNA levels of cpt 1, while the 75% and 100% CO diets down-regulated its mRNA levels. The hsl and atgl were down-regulated through the addition of dietary CO. The mRNA level of lpl was not affected by dietary treatments. Results showed that CO could completely replace FO without affecting growth performance, but high CO will lead to the significant liver lipid deposition and lower LC-PUFAs contents of fish flesh. Full article
24 pages, 8216 KB  
Article
Ketamine’s Amelioration of Fear Extinction in Adolescent Male Mice Is Associated with the Activation of the Hippocampal Akt-mTOR-GluA1 Pathway
by Emilija Glavonic, Milorad Dragic, Milos Mitic, Minja Aleksic, Iva Lukic, Sanja Ivkovic and Miroslav Adzic
Pharmaceuticals 2024, 17(6), 669; https://doi.org/10.3390/ph17060669 - 22 May 2024
Cited by 4 | Viewed by 2052
Abstract
Fear-related disorders, including post-traumatic stress disorder (PTSD), and anxiety disorders are pervasive psychiatric conditions marked by persistent fear, stemming from its dysregulated acquisition and extinction. The primary treatment for these disorders, exposure therapy (ET), relies heavily on fear extinction (FE) principles. Adolescence, a [...] Read more.
Fear-related disorders, including post-traumatic stress disorder (PTSD), and anxiety disorders are pervasive psychiatric conditions marked by persistent fear, stemming from its dysregulated acquisition and extinction. The primary treatment for these disorders, exposure therapy (ET), relies heavily on fear extinction (FE) principles. Adolescence, a vulnerable period for developing psychiatric disorders, is characterized by neurobiological changes in the fear circuitry, leading to impaired FE and increased susceptibility to relapse following ET. Ketamine, known for relieving anxiety and reducing PTSD symptoms, influences fear-related learning processes and synaptic plasticity across the fear circuitry. Our study aimed to investigate the effects of ketamine (10 mg/kg) on FE in adolescent male C57 BL/6 mice at the behavioral and molecular levels. We analyzed the protein and gene expression of synaptic plasticity markers in the hippocampus (HPC) and prefrontal cortex (PFC) and sought to identify neural correlates associated with ketamine’s effects on adolescent extinction learning. Ketamine ameliorated FE in the adolescent males, likely affecting the consolidation and/or recall of extinction memory. Ketamine also increased the Akt and mTOR activity and the GluA1 and GluN2A levels in the HPC and upregulated BDNF exon IV mRNA expression in the HPC and PFC of the fear-extinguished mice. Furthermore, ketamine increased the c-Fos expression in specific brain regions, including the ventral HPC (vHPC) and the left infralimbic ventromedial PFC (IL vmPFC). Providing a comprehensive exploration of ketamine’s mechanisms in adolescent FE, our study suggests that ketamine’s effects on FE in adolescent males are associated with the activation of hippocampal Akt-mTOR-GluA1 signaling, with the vHPC and the left IL vmPFC as the proposed neural correlates. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

12 pages, 2643 KB  
Article
Anti-Metastatic Effects of Standardized Polysaccharide Fraction from Diospyros kaki Leaves via GSK3β/β-Catenin and JNK Inactivation in Human Colon Cancer Cells
by Woo-Seok Lee, Ji-Sun Shin, Seo-Yun Jang, Kyung-Sook Chung, Soo-Dong Kim, Chang-Won Cho, Hee-Do Hong, Young Kyoung Rhee and Kyung-Tae Lee
Polymers 2024, 16(9), 1275; https://doi.org/10.3390/polym16091275 - 3 May 2024
Cited by 3 | Viewed by 2108
Abstract
A polysaccharide fraction from Diospyros kaki (PLE0) leaves was previously reported to possess immunostimulatory, anti-osteoporotic, and TGF-β1-induced epithelial–mesenchymal transition inhibitory activities. Although a few beneficial effects against colon cancer metastasis have been reported, we aimed to investigate the anti-metastatic activity of PLE0 and [...] Read more.
A polysaccharide fraction from Diospyros kaki (PLE0) leaves was previously reported to possess immunostimulatory, anti-osteoporotic, and TGF-β1-induced epithelial–mesenchymal transition inhibitory activities. Although a few beneficial effects against colon cancer metastasis have been reported, we aimed to investigate the anti-metastatic activity of PLE0 and its underlying molecular mechanisms in HT-29 and HCT-116 human colon cancer cells. We conducted a wound-healing assay, invasion assay, qRT-PCR analysis, western blot analysis, gelatin zymography, luciferase assay, and small interfering RNA gene silencing in colon cancer cells. PLE0 concentration-dependently inhibited metastasis by suppressing cell migration and invasion. The suppression of N-cadherin and vimentin expression as well as upregulation of E-cadherin through the reduction of p-GSK3β and β-catenin levels resulted in the outcome of this effect. PLE0 also suppressed the expression and enzymatic activity of matrix metalloproteinases (MMP)-2 and MMP-9, while simultaneously increasing the protein and mRNA levels of the tissue inhibitor of metalloproteinases (TIMP-1). Furthermore, signaling data disclosed that PLE0 suppressed the transcriptional activity and phosphorylation of p65 (a subunit of NF-κB), as well as the phosphorylation of c-Jun and c-Fos (subunits of AP-1) pathway. PLE0 markedly suppressed JNK phosphorylation, and JNK knockdown significantly restored PLE0-regulated MMP-2/-9 and TIMP-1 expression. Collectively, our data indicate that PLE0 exerts an anti-metastatic effect in human colon cancer cells by inhibiting epithelial–mesenchymal transition and MMP-2/9 via downregulation of GSK3β/β-catenin and JNK signaling. Full article
(This article belongs to the Special Issue Polymeric Biomaterials: Characterization and Application)
Show Figures

Graphical abstract

13 pages, 3544 KB  
Article
Identifying Candidate Gene Drivers Associated with Relapse in Pediatric T-Cell Acute Lymphoblastic Leukemia Using a Gene Co-Expression Network Approach
by Anthony Kypraios, Juba Bennour, Véronique Imbert, Léa David, Julien Calvo, Françoise Pflumio, Raphaël Bonnet, Marie Couralet, Virginie Magnone, Kevin Lebrigand, Pascal Barbry, Pierre S. Rohrlich and Jean-François Peyron
Cancers 2024, 16(9), 1667; https://doi.org/10.3390/cancers16091667 - 25 Apr 2024
Cited by 4 | Viewed by 3014
Abstract
Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first [...] Read more.
Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB, TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes, respectively, for each patient). Applying a Cox regression method to these patient-specific genes, along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated three model gene signatures that efficiently identified relapsed patients within the cohort. Overall, our approach identified new potential relapse-associated genes and proposed three model gene signatures associated with lower survival rates for high-score patients. Full article
(This article belongs to the Collection Application of Bioinformatics in Cancers)
Show Figures

Figure 1

Back to TopTop