Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = buried topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1332 KiB  
Article
SC-LKM: A Semantic Chunking and Large Language Model-Based Cybersecurity Knowledge Graph Construction Method
by Pu Wang, Yangsen Zhang, Zicheng Zhou and Yuqi Wang
Electronics 2025, 14(14), 2878; https://doi.org/10.3390/electronics14142878 - 18 Jul 2025
Viewed by 427
Abstract
In cybersecurity, constructing an accurate knowledge graph is vital for discovering key entities and relationships in security incidents buried in vast unstructured threat reports. Traditional knowledge-graph construction pipelines based on handcrafted rules or conventional machine learning models falter when the data scale and [...] Read more.
In cybersecurity, constructing an accurate knowledge graph is vital for discovering key entities and relationships in security incidents buried in vast unstructured threat reports. Traditional knowledge-graph construction pipelines based on handcrafted rules or conventional machine learning models falter when the data scale and linguistic variety grow. GraphRAG, a retrieval-augmented generation (RAG) framework that splits documents into fixed-length chunks and then retrieves the most relevant ones for generation, offers a scalable alternative yet still suffers from fragmentation and semantic gaps that erode graph integrity. To resolve these issues, this paper proposes SC-LKM, a cybersecurity knowledge-graph construction method that couples the GraphRAG backbone with hierarchical semantic chunking. SC-LKM applies semantic chunking to build a cybersecurity knowledge graph that avoids the fragmentation and inconsistency seen in prior work. The semantic chunking method first respects the native document hierarchy and then refines boundaries with topic similarity and named-entity continuity, maintaining logical coherence while limiting information loss during the fine-grained processing of unstructured text. SC-LKM further integrates the semantic comprehension capacity of Qwen2.5-14B-Instruct, markedly boosting extraction accuracy and reasoning quality. Experimental results show that SC-LKM surpasses baseline systems in entity-recognition coverage, topology density, and semantic consistency. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

15 pages, 3483 KiB  
Article
Impact of Device Topology on the Performance of High-Speed 1550 nm Wafer-Fused VCSELs
by Andrey Babichev, Sergey Blokhin, Andrey Gladyshev, Leonid Karachinsky, Innokenty Novikov, Alexey Blokhin, Mikhail Bobrov, Yakov Kovach, Alexander Kuzmenkov, Vladimir Nevedomsky, Nikolay Maleev, Evgenii Kolodeznyi, Kirill Voropaev, Alexey Vasilyev, Victor Ustinov, Anton Egorov, Saiyi Han, Si-Cong Tian and Dieter Bimberg
Photonics 2023, 10(6), 660; https://doi.org/10.3390/photonics10060660 - 7 Jun 2023
Cited by 7 | Viewed by 2714
Abstract
A detailed experimental analysis of the impact of device topology on the performance of 1550 nm VCSELs with an active region based on thin InGaAs/InAlGaAs quantum wells and a composite InAlGaAs buried tunnel junction is presented. The high-speed performance of the lasers with [...] Read more.
A detailed experimental analysis of the impact of device topology on the performance of 1550 nm VCSELs with an active region based on thin InGaAs/InAlGaAs quantum wells and a composite InAlGaAs buried tunnel junction is presented. The high-speed performance of the lasers with L-type device topology (with the largest double-mesa sizes) is mainly limited by electrical parasitics showing noticeable damping of the relaxation oscillations. For the S-type device topology (with the smallest double-mesa sizes), the decrease in the parasitic capacitance of the reverse-biased p+n-junction region outside the buried tunnel junction region allowed to raise the parasitic cutoff frequency up to 13–14 GHz. The key mechanism limiting the high-speed performance of such devices is thus the damping of the relaxation oscillations. VCSELs with S-type device topology demonstrate more than 13 GHz modulation bandwidth and up to 37 Gbps nonreturn-to-zero data transmission under back-to-back conditions at 20 °C. Full article
Show Figures

Figure 1

19 pages, 1868 KiB  
Article
An Energy-Efficient T-Based Routing Topology for Target Tracking in Battery Operated Mobile Wireless Sensor Networks
by K. Kalaivanan, G. Idayachandran, P. Vetrivelan, A. Henridass, V. Bhanumathi, Elizabeth Chang and P. Sam Methuselah
Sensors 2023, 23(4), 2162; https://doi.org/10.3390/s23042162 - 14 Feb 2023
Cited by 3 | Viewed by 3082
Abstract
Real-time smart applications are now possible because to developments in communication and sensor technology. Wireless sensor networks (WSNs) are used to collect data from specific disaster sites, such as fire events, gas leaks, land mines, earthquake, landslides, etc., where it is necessary to [...] Read more.
Real-time smart applications are now possible because to developments in communication and sensor technology. Wireless sensor networks (WSNs) are used to collect data from specific disaster sites, such as fire events, gas leaks, land mines, earthquake, landslides, etc., where it is necessary to know the exact location of the detected information to safely rescue the people. For instance, the detection and disposal of explosive materials is a difficult task because land mines consistently threaten human life. Here, the T-based Routing Topology (TRT) is suggested to gather data from sensors (metal detectors, Ground Penetrating Radars (GPR), Infra-Red sensors, etc.), Global Positioning System (GPS), and cameras in land mine-affected areas. Buried explosive materials can be found and located with high accuracy. Additionally, it will be simpler to eliminate bombs and reduce threats to humans. The efficiency of the suggested data collection method is evaluated using Network Simulator-2 (NS-2). Also, the proposed T-based routing topology requires a minimal number of nodes to cover the entire searching area and establish effective communication. In contrast, the number of nodes participating in the sensing area grows, as the depth of the tree increases in the existing tree topology-based data gathering. And for cluster topology, the number of nodes deployment depends on the transmission range of the sensor nodes. Full article
Show Figures

Figure 1

13 pages, 6397 KiB  
Article
Polarization-Induced Phase Transitions in Ultra-Thin InGaN-Based Double Quantum Wells
by Sławomir P. Łepkowski and Abdur Rehman Anwar
Nanomaterials 2022, 12(14), 2418; https://doi.org/10.3390/nano12142418 - 14 Jul 2022
Cited by 3 | Viewed by 2093
Abstract
We investigate the phase transitions and the properties of the topological insulator in InGaN/GaN and InN/InGaN double quantum wells grown along the [0001] direction. We apply a realistic model based on the nonlinear theory of elasticity and piezoelectricity and the eight-band k·p method [...] Read more.
We investigate the phase transitions and the properties of the topological insulator in InGaN/GaN and InN/InGaN double quantum wells grown along the [0001] direction. We apply a realistic model based on the nonlinear theory of elasticity and piezoelectricity and the eight-band k·p method with relativistic and nonrelativistic linear-wave-vector terms. In this approach, the effective spin–orbit interaction in InN is negative, which represents the worst-case scenario for obtaining the topological insulator in InGaN-based structures. Despite this rigorous assumption, we demonstrate that the topological insulator can occur in InGaN/GaN and InN/InGaN double quantum wells when the widths of individual quantum wells are two and three monolayers (MLs), and three and three MLs. In these structures, when the interwell barrier is sufficiently thin, we can observe the topological phase transition from the normal insulator to the topological insulator via the Weyl semimetal, and the nontopological phase transition from the topological insulator to the nonlocal topological semimetal. We find that in InGaN/GaN double quantum wells, the bulk energy gap in the topological insulator phase is much smaller for the structures with both quantum well widths of 3 MLs than in the case when the quantum well widths are two and three MLs, whereas in InN/InGaN double quantum wells, the opposite is true. In InN/InGaN structures with both quantum wells being three MLs and a two ML interwell barrier, the bulk energy gap for the topological insulator can reach about 1.2 meV. We also show that the topological insulator phase rapidly deteriorates with increasing width of the interwell barrier due to a decrease in the bulk energy gap and reduction in the window of In content between the normal insulator and the nonlocal topological semimetal. For InN/InGaN double quantum wells with the width of the interwell barrier above five or six MLs, the topological insulator phase does not appear. In these structures, we find two novel phase transitions, namely the nontopological phase transition from the normal insulator to the nonlocal normal semimetal and the topological phase transition from the nonlocal normal semimetal to the nonlocal topological semimetal via the buried Weyl semimetal. These results can guide future investigations towards achieving a topological insulator in InGaN-based nanostructures. Full article
Show Figures

Figure 1

17 pages, 5018 KiB  
Article
End Effects and Geometric Compensation in Linear Permanent Magnet Synchronous Generators with Different Topologies
by Jonathan Sjölund, Anna E. Frost, Mats Leijon and Sandra Eriksson
Designs 2021, 5(4), 64; https://doi.org/10.3390/designs5040064 - 9 Oct 2021
Cited by 3 | Viewed by 2611
Abstract
Electricity production from ocean waves with different solutions is a topic of major research interest. Many of such designs are based on linear generators that inherently introduce end forces. In this paper, detent force using Maxwell Stress Tensor and induced voltage is initially [...] Read more.
Electricity production from ocean waves with different solutions is a topic of major research interest. Many of such designs are based on linear generators that inherently introduce end forces. In this paper, detent force using Maxwell Stress Tensor and induced voltage is initially investigated for two different winding patterns for a generator topology with buried magnets in a finite element software. Two ways of overcoming the end forces are further examined: the first method reduces the magnetic flux variations of the translator between stator and air. The second method aims at countering the end forces at both ends for full active stator area. A comparison is then made between buried and surface-mounted topologies for the second end effect compensation method. Both no-load and load conditions are investigated in the comparison. The end effect compensation shows promising results for both topologies. Some clear similarities of the extended stator used to counter the end forces are also apparent, where the stator extensions completely cover the outer poles of both topologies. The results also indicate a longer full active stator area for the buried topology for the same pole-pitch and stroke length, resulting in a higher average voltage for partial stator overlap. Full article
(This article belongs to the Section Electrical Engineering Design)
Show Figures

Figure 1

22 pages, 1864 KiB  
Article
Multifrequency Topological Derivative Approach to Inverse Scattering Problems in Attenuating Media
by Ana Carpio and María-Luisa Rapún
Symmetry 2021, 13(9), 1702; https://doi.org/10.3390/sym13091702 - 15 Sep 2021
Cited by 2 | Viewed by 2629
Abstract
Detecting objects hidden in a medium is an inverse problem. Given data recorded at detectors when sources emit waves that interact with the medium, we aim to find objects that would generate similar data in the presence of the same waves. In opposition, [...] Read more.
Detecting objects hidden in a medium is an inverse problem. Given data recorded at detectors when sources emit waves that interact with the medium, we aim to find objects that would generate similar data in the presence of the same waves. In opposition, the associated forward problem describes the evolution of the waves in the presence of known objects. This gives a symmetry relation: if the true objects (the desired solution of the inverse problem) were considered for solving the forward problem, then the recorded data should be returned. In this paper, we develop a topological derivative-based multifrequency iterative algorithm to reconstruct objects buried in attenuating media with limited aperture data. We demonstrate the method on half-space configurations, which can be related to problems set in the whole space by symmetry. One-step implementations of the algorithm provide initial approximations, which are improved in a few iterations. We can locate object components of sizes smaller than the main components, or buried deeper inside. However, attenuation effects hinder object detection depending on the size and depth for fixed ranges of frequencies. Full article
(This article belongs to the Special Issue Advanced Mathematical and Simulation Methods for Inverse Problems)
Show Figures

Figure 1

15 pages, 6771 KiB  
Article
Effect of Pole Shoe Design on Inclination Angle of Different Magnetic Fields in Permanent Magnet Machines
by Jonathan Sjölund and Sandra Eriksson
Energies 2021, 14(9), 2437; https://doi.org/10.3390/en14092437 - 24 Apr 2021
Cited by 6 | Viewed by 3360
Abstract
Electromagnetic modelling of electrical machines through finite element analysis is an important design tool for detailed studies of high resolution. Through the usage of finite element analysis, one can study the electromagnetic fields for information that is often difficult to acquire in an [...] Read more.
Electromagnetic modelling of electrical machines through finite element analysis is an important design tool for detailed studies of high resolution. Through the usage of finite element analysis, one can study the electromagnetic fields for information that is often difficult to acquire in an experimental test bench. The requirement for accurate result is that the magnetic circuit is modelled in a correct way, which may be more difficult to maintain for rare earth free permanent magnets with an operating range that is more likely to be close to non-linear regions for the relation between magnetic flux density and magnetic field strength. In this paper, the inclination angles of the magnetic flux density, magnetic field strength and magnetization are studied and means to reduce the inclination angles are investigated. Both rotating and linear machines are investigated in this paper, with different current densities induced in the stator windings. By proper design of the pole shoes, one can reduce the inclination angles of the fields in the permanent magnet. By controlling the inclination angles, one can both enhance the performance of the magnetic circuit and increase the accuracy of simpler models for permanent magnet modelling. Full article
(This article belongs to the Special Issue Permanent Magnet Machines for Wave Energy Converters)
Show Figures

Figure 1

19 pages, 1005 KiB  
Article
The Roles of Protein Structure, Taxon Sampling, and Model Complexity in Phylogenomics: A Case Study Focused on Early Animal Divergences
by Akanksha Pandey and Edward L. Braun
Biophysica 2021, 1(2), 87-105; https://doi.org/10.3390/biophysica1020008 - 25 Mar 2021
Cited by 4 | Viewed by 3401
Abstract
Despite the long history of using protein sequences to infer the tree of life, the potential for different parts of protein structures to retain historical signal remains unclear. We propose that it might be possible to improve analyses of phylogenomic datasets by incorporating [...] Read more.
Despite the long history of using protein sequences to infer the tree of life, the potential for different parts of protein structures to retain historical signal remains unclear. We propose that it might be possible to improve analyses of phylogenomic datasets by incorporating information about protein structure. We test this idea using the position of the root of Metazoa (animals) as a model system. We examined the distribution of “strongly decisive” sites (alignment positions that support a specific tree topology) in a dataset comprising >1500 proteins and almost 100 taxa. The proportion of each class of strongly decisive sites in different structural environments was very sensitive to the model used to analyze the data when a limited number of taxa were used but they were stable when taxa were added. As long as enough taxa were analyzed, sites in all structural environments supported the same topology regardless of whether standard tree searches or decisive sites were used to select the optimal tree. However, the use of decisive sites revealed a difference between the support for minority topologies for sites in different structural environments: buried sites and sites in sheet and coil environments exhibited equal support for the minority topologies, whereas solvent-exposed and helix sites had unequal numbers of sites, supporting the minority topologies. This suggests that the relatively slowly evolving buried, sheet, and coil sites are giving an accurate picture of the true species tree and the amount of conflict among gene trees. Taken as a whole, this study indicates that phylogenetic analyses using sites in different structural environments can yield different topologies for the deepest branches in the animal tree of life and that analyzing larger numbers of taxa eliminates this conflict. More broadly, our results highlight the desirability of incorporating information about protein structure into phylogenomic analyses. Full article
Show Figures

Figure 1

32 pages, 1775 KiB  
Article
Phylogenetic Analyses of Sites in Different Protein Structural Environments Result in Distinct Placements of the Metazoan Root
by Akanksha Pandey and Edward L. Braun
Biology 2020, 9(4), 64; https://doi.org/10.3390/biology9040064 - 28 Mar 2020
Cited by 22 | Viewed by 6383
Abstract
Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the [...] Read more.
Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the models used to analyze heterogeneous datasets. Some of the heterogeneity may reflect the different patterns of selection on proteins based on their structures. To test that hypothesis, we developed a pipeline to divide phylogenomic protein datasets into subsets based on secondary structure and relative solvent accessibility. We then tested whether amino acids in different structural environments had distinct signals for the topology of the deepest branches in the metazoan tree. We focused on a dataset that appeared to have a mixture of signals and we found that the most striking difference in phylogenetic signal reflected relative solvent accessibility. Analyses of exposed sites (residues located on the surface of proteins) yielded a tree that placed ctenophores sister to all other animals whereas sites buried inside proteins yielded a tree with a sponge+ctenophore clade. These differences in phylogenetic signal were not ameliorated when we conducted analyses using a set of maximum-likelihood profile mixture models. These models are very similar to the Bayesian CAT model, which has been used in many analyses of deep metazoan phylogeny. In contrast, analyses conducted after recoding amino acids to limit the impact of deviations from compositional stationarity increased the congruence in the estimates of phylogeny for exposed and buried sites; after recoding amino acid trees estimated using the exposed and buried site both supported placement of ctenophores sister to all other animals. Although the central conclusion of our analyses is that sites in different structural environments yield distinct trees when analyzed using models of protein evolution, our amino acid recoding analyses also have implications for metazoan evolution. Specifically, our results add to the evidence that ctenophores are the sister group of all other animals and they further suggest that the placozoa+cnidaria clade found in some other studies deserves more attention. Taken as a whole, these results provide striking evidence that it is necessary to achieve a better understanding of the constraints due to protein structure to improve phylogenetic estimation. Full article
(This article belongs to the Special Issue Feature Papers 2019)
Show Figures

Figure 1

15 pages, 1717 KiB  
Article
Derivative Method Based Orientation Detection of Substation Grounding Grid
by Aamir Qamar, Muhammad Umair, Fan Yang, Muhammad Uzair and Zeeshan Kaleem
Energies 2018, 11(7), 1873; https://doi.org/10.3390/en11071873 - 18 Jul 2018
Cited by 9 | Viewed by 3314
Abstract
The grounding grid is a key part of substation protection, which provides safety to personnel and equipment under normal as well as fault conditions. Currently, the topology of a grounding grid is determined by assuming that its orientation is parallel to the plane [...] Read more.
The grounding grid is a key part of substation protection, which provides safety to personnel and equipment under normal as well as fault conditions. Currently, the topology of a grounding grid is determined by assuming that its orientation is parallel to the plane of earth. However, in practical scenarios, the assumed orientation may not coincide with the actual orientation of the grounding grid. Hence, currently employed methods for topology detection fails to produce the desired results. Therefore, accurate detection of grounding grid orientation is mandatory for measuring its topology accurately. In this paper, we propose a derivative method for orientation detection of grounding grid in high voltage substations. The proposed method is applicable to both equally and unequally spaced grounding grids. Furthermore, our method can also determine the orientation of grounding grid in the challenging case when a diagonal branch is present in the mesh. The proposed method is based on the fact that the distribution of magnetic flux density is perpendicular to the surface of the earth when a current is injected into the grid through a vertical conductor. Taking the third order derivative of the magnetic flux density, the main peak coinciding with the position of underground conductor is accurately obtained. Thus, the main peak describes the orientation of buried conductor of grounding grid. Simulations are performed using Comsol Multiphysics 5.0 to demonstrate the accuracy of the proposed method. Our results demonstrate that the proposed method calculate the orientation of grounding grid with high accuracy. We also investigate the effect of varying critical parameters of our method. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop