Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = bristle organ development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5823 KB  
Article
The Ultrastructure of Olfactory Sensilla Across the Antenna of Monolepta signata (Oliver)
by Jiyu Cao, Wanjie He, Huiqin Li, Jiangyan Zhu, Xiaoge Li, Jiahui Tian, Mengdie Luo and Jing Chen
Insects 2025, 16(6), 573; https://doi.org/10.3390/insects16060573 - 29 May 2025
Viewed by 768
Abstract
The antennal sensilla serve as a crucial olfactory organ, enabling insects to detect semiochemicals and adjust their host-seeking and oviposition behaviors accordingly. Monolepta signata (Oliver) (Coleoptera: Chrysomelidae), has emerged as a significant agricultural pest that affects key economic crops such as maize and [...] Read more.
The antennal sensilla serve as a crucial olfactory organ, enabling insects to detect semiochemicals and adjust their host-seeking and oviposition behaviors accordingly. Monolepta signata (Oliver) (Coleoptera: Chrysomelidae), has emerged as a significant agricultural pest that affects key economic crops such as maize and cotton. Despite the development of various control methods based on volatile stimulation, there is still limited documentation on the sensilla involved in olfaction. In this study, the ultrastructure of the sensilla, especially the olfactory sensilla on the antennae of both males and females, was investigated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Three types of olfactory sensillum types, including trichodea, basiconica, and coeloconica, and four non-olfactory sensilla including chaetica, campaniformia, auricillica, and Böhm bristle were observed. Sensilla trichodea and basiconica on the antennae of M. signata were further classified into two subtypes according to their morphology. For the first time, the pores on the sensilla trichodea, basiconica, and coeloconica cuticular walls were observed in this species, suggesting that they are involved in semiochemical perception. This study contributes new insights into the olfactory system of M. signata, which can be integrated with other molecular, genetic, and behavioral research to establish a comprehensive understanding of its physiological functions. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

26 pages, 12138 KB  
Article
Novel Genome-Engineered H Alleles Differentially Affect Lateral Inhibition and Cell Dichotomy Processes during Bristle Organ Development
by Tanja C. Mönch, Thomas K. Smylla, Franziska Brändle, Anette Preiss and Anja C. Nagel
Genes 2024, 15(5), 552; https://doi.org/10.3390/genes15050552 - 26 Apr 2024
Viewed by 2012
Abstract
Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, [...] Read more.
Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability. Full article
Show Figures

Figure 1

16 pages, 3732 KB  
Review
The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization
by Jean-Michel Gibert and Frédérique Peronnet
Insects 2021, 12(10), 884; https://doi.org/10.3390/insects12100884 - 29 Sep 2021
Cited by 5 | Viewed by 5092
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, [...] Read more.
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment. Full article
(This article belongs to the Special Issue Epigenetics in Insects)
Show Figures

Figure 1

15 pages, 8311 KB  
Article
Recapitulating Actin Module Organization in the Drosophila Oocyte Reveals New Roles for Bristle-Actin-Modulating Proteins
by Ramesh Kumar Krishnan, Raju Baskar, Bakhrat Anna, Natalie Elia, Mandy Boermel, Andreas R. Bausch and Uri Abdu
Int. J. Mol. Sci. 2021, 22(8), 4006; https://doi.org/10.3390/ijms22084006 - 13 Apr 2021
Viewed by 3476
Abstract
The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. [...] Read more.
The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop