Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = boron nitride nanoribbons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1369 KiB  
Review
Boron Nitride Nanostructures (BNNs) Within Metal–Organic Frameworks (MOFs): Electrochemical Platform for Hydrogen Sensing and Storage
by Azizah Alamro and Thanih Balbaied
Analytica 2024, 5(4), 599-618; https://doi.org/10.3390/analytica5040040 - 30 Nov 2024
Cited by 2 | Viewed by 2563
Abstract
Boron nitride nanostructures (BNNs), including nanotubes, nanosheets, and nanoribbons, are renowned for their exceptional thermal stability, chemical inertness, mechanical strength, and high surface area, making them suitable for advanced material applications. Metal–organic frameworks (MOFs), characterized by their porous crystalline structures, high surface area, [...] Read more.
Boron nitride nanostructures (BNNs), including nanotubes, nanosheets, and nanoribbons, are renowned for their exceptional thermal stability, chemical inertness, mechanical strength, and high surface area, making them suitable for advanced material applications. Metal–organic frameworks (MOFs), characterized by their porous crystalline structures, high surface area, and tunable porosity, have emerged as excellent candidates for gas adsorption and storage applications, particularly in the context of hydrogen. This paper explores the synthesis and properties of BNNs and MOFs, alongside the innovative approach of integrating BNNs within MOFs to create composite materials with synergistic properties. The integration of BNNs into MOFs enhances the overall thermal and chemical stability of the composite while improving hydrogen sensing and storage performance. Various synthesis methods for both BNNs and MOFs are discussed, including chemical vapor deposition, solvothermal synthesis, and in situ growth, with a focus on their scalability and reproducibility. Furthermore, the mechanisms underlying hydrogen sensing and storage are examined, including physisorption, chemisorption, charge transfer, and work function modulation. Electrochemical characterization techniques, such as cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge, are used to analyze the performance of BNN-MOF systems in hydrogen storage and sensing applications. These methods offer insights into the material’s electrochemical behavior and its potential to store hydrogen efficiently. Potential industrial applications of BNN-MOF composites are highlighted, particularly in fuel cells, hydrogen-powered vehicles, safety monitoring in hydrogen production and distribution networks, and energy storage devices. The integration of these materials can contribute significantly to the development of more efficient hydrogen energy systems. Finally, this study outlines key recommendations for future research, which include optimizing synthesis techniques, improving the hydrogen interaction mechanisms, enhancing the stability and durability of BNN-MOF composites, and performing comprehensive economic and environmental assessments. BNN-MOF composites represent a promising direction in the advancement of hydrogen sensing and storage technologies, offering significant potential to support the transition toward sustainable energy systems and hydrogen-based economies. Full article
(This article belongs to the Special Issue Feature Papers in Analytica)
Show Figures

Figure 1

13 pages, 12843 KiB  
Article
Investigations on the Nonlinear Optical Properties of 0D, 1D, and 2D Boron Nitride Nanomaterials in the Visible Spectral Region
by Stefanie Dengler and Bernd Eberle
Nanomaterials 2023, 13(12), 1849; https://doi.org/10.3390/nano13121849 - 13 Jun 2023
Cited by 6 | Viewed by 2273
Abstract
In recent years, boron nitride nanomaterials have attracted increasing attention due to their unique properties such as high temperature stability and high thermal conductivity. They are structurally analogous to carbon nanomaterials and can also be generated as zero-dimensional nanoparticles and fullerenes, one-dimensional nanotubes [...] Read more.
In recent years, boron nitride nanomaterials have attracted increasing attention due to their unique properties such as high temperature stability and high thermal conductivity. They are structurally analogous to carbon nanomaterials and can also be generated as zero-dimensional nanoparticles and fullerenes, one-dimensional nanotubes and nanoribbons, and two-dimensional nanosheets or platelets. In contrast to carbon-based nanomaterials, which have been extensively studied during recent years, the optical limiting properties of boron nitride nanomaterials have hardly been analysed so far. This work summarises a comprehensive study on the nonlinear optical response of dispersed boron nitride nanotubes, boron nitride nanoplatelets, and boron nitride nanoparticles using nanosecond laser pulses at 532 nm. Their optical limiting behaviour is characterised by means of nonlinear transmittance and scattered energy measurements and a beam profiling camera is used to analyse the beam characteristics of the transmitted laser radiation. Our results show that nonlinear scattering dominates the OL performance of all measured boron nitride nanomaterials. Boron nitride nanotubes show a large optical limiting effect, much stronger than the benchmark material, multi-walled carbon nanotubes, which makes them promising for laser protection applications. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

10 pages, 1675 KiB  
Article
DFT Study of Adsorption Behavior of Nitro Species on Carbon-Doped Boron Nitride Nanoribbons for Toxic Gas Sensing
by Francisco Villanueva-Mejia, Santiago José Guevara-Martínez, Manuel Arroyo-Albiter, José Juan Alvarado-Flores and Adalberto Zamudio-Ojeda
Nanomaterials 2023, 13(8), 1410; https://doi.org/10.3390/nano13081410 - 19 Apr 2023
Cited by 1 | Viewed by 1815
Abstract
The modifications of the electronic properties on carbon-doped boron nitride nanoribbons (BNNRs) as a response to the adsorption of different nitro species were investigated in the framework of the density functional theory within the generalized gradient approximation. Calculations were performed using the SIESTA [...] Read more.
The modifications of the electronic properties on carbon-doped boron nitride nanoribbons (BNNRs) as a response to the adsorption of different nitro species were investigated in the framework of the density functional theory within the generalized gradient approximation. Calculations were performed using the SIESTA code. We found that the main response involved tuning the original magnetic behavior to a non-magnetic system when the molecule was chemisorbed on the carbon-doped BNNR. It was also revealed that some species could be dissociated through the adsorption process. Furthermore, the nitro species preferred to interact over nanosurfaces where dopants substituted the B sublattice of the carbon-doped BNNRs. Most importantly, the switch on the magnetic behavior offers the opportunity to apply these systems to fit novel technological applications. Full article
(This article belongs to the Special Issue Theoretical Calculation and Molecular Modeling of Nanomaterials)
Show Figures

Figure 1

11 pages, 10475 KiB  
Article
Electric-Field Control in Phosphorene-Based Heterostructures
by Calin-Andrei Pantis-Simut, Amanda Teodora Preda, Nicolae Filipoiu, Alaa Allosh and George Alexandru Nemnes
Nanomaterials 2022, 12(20), 3650; https://doi.org/10.3390/nano12203650 - 18 Oct 2022
Cited by 4 | Viewed by 2435
Abstract
Phosphorene is a graphene-like material with an intermediate band gap, in contrast to zero-gap graphene and large-gap dichalcogenides or hexagonal boron nitride (hBN), which makes it more suitable for nanoelectronic devices. However, inducing band-gap modulation in freestanding phosphorene nanoribbons (PNRs) is problematic, as [...] Read more.
Phosphorene is a graphene-like material with an intermediate band gap, in contrast to zero-gap graphene and large-gap dichalcogenides or hexagonal boron nitride (hBN), which makes it more suitable for nanoelectronic devices. However, inducing band-gap modulation in freestanding phosphorene nanoribbons (PNRs) is problematic, as high in-plane electric fields are necessary to close the gap. We perform here a detailed investigation concerning the substrate influence on the electric-field control exerted by an external gate, using the density functional theory–non-equilibrium Green’s functions (DFT-NEGF) framework. It is established that the interaction with a hexagonal boron nitride supporting layer significantly enhances the gap modulation. Furthermore, we address the issue of contacting the PNRs, by using conducting graphene nanoribbons embedded in the support hBN layer. Within this setup, a measurable spin polarization is achieved owing to the anti-ferromagnetic coupling between the edges of the graphene nanoribbons. Full article
(This article belongs to the Special Issue Applied Physics and Nanomaterials)
Show Figures

Figure 1

8 pages, 1306 KiB  
Article
Boron Nitride Nanoribbons Grown by Chemical Vapor Deposition for VUV Applications
by Jiandong Hao, Ling Li, Peng Gao, Xiangqian Jiang, Chuncheng Ban and Ningqiang Shi
Micromachines 2022, 13(9), 1372; https://doi.org/10.3390/mi13091372 - 23 Aug 2022
Cited by 7 | Viewed by 1901
Abstract
The fabrication process of vacuum ultraviolet (VUV) detectors based on traditional semiconductor materials is complex and costly. The new generation of wide-bandgap semiconductor materials greatly reduce the fabrication cost of the entire VUV detector. We use the chemical vapor deposition (CVD) method to [...] Read more.
The fabrication process of vacuum ultraviolet (VUV) detectors based on traditional semiconductor materials is complex and costly. The new generation of wide-bandgap semiconductor materials greatly reduce the fabrication cost of the entire VUV detector. We use the chemical vapor deposition (CVD) method to grow boron nitride nanoribbons (BNNRs) for VUV detectors. Morphological and compositional characterization of the BNNRs was tested. VUV detector based on BNNRs exhibits strong response to VUV light with wavelengths as short as 185 nm. The photo–dark current ratio (PDCR) of this detector is 272.43, the responsivity is 0.47 nA/W, and the rise time and fall time are 0.3 s and 0.6 s. The response speed is faster than the same type of BN-based VUV detectors. This paper offers more opportunities for high-performance and low-cost VUV detectors made of wide-bandgap semiconductor materials in the future. Full article
Show Figures

Figure 1

13 pages, 14610 KiB  
Article
First Principle Study on Electronic and Transport Properties of Finite-Length Nanoribbons and Nanodiscs for Selected Two-Dimensional Materials
by Mirali Jafari and Anna Dyrdał
Molecules 2022, 27(7), 2228; https://doi.org/10.3390/molecules27072228 - 29 Mar 2022
Cited by 2 | Viewed by 2602
Abstract
Using the density functional theory, we calculate electronic states of various nanoribbons and nanodiscs formed from selected two-dimensional materials, such as graphene, silicene, and hexagonal boron nitride. The main objective of the analysis is a search for zero-energy states in such systems, which [...] Read more.
Using the density functional theory, we calculate electronic states of various nanoribbons and nanodiscs formed from selected two-dimensional materials, such as graphene, silicene, and hexagonal boron nitride. The main objective of the analysis is a search for zero-energy states in such systems, which is an important issue as their presence indicates certain topological properties associated with chirality. The analysis is also supported by calculating transport properties. Full article
Show Figures

Figure 1

10 pages, 2377 KiB  
Article
Energy Gaps in BN/GNRs Planar Heterostructure
by Jinyue Guan and Lei Xu
Materials 2021, 14(17), 5079; https://doi.org/10.3390/ma14175079 - 5 Sep 2021
Cited by 3 | Viewed by 2608
Abstract
Using the tight-binding approach, we study the band gaps of boron nitride (BN)/ graphene nanoribbon (GNR) planar heterostructures, with GNRs embedded in a BN sheet. The width of BN has little effect on the band gap of a heterostructure. The band gap oscillates [...] Read more.
Using the tight-binding approach, we study the band gaps of boron nitride (BN)/ graphene nanoribbon (GNR) planar heterostructures, with GNRs embedded in a BN sheet. The width of BN has little effect on the band gap of a heterostructure. The band gap oscillates and decreases from 2.44 eV to 0.26 eV, as the width of armchair GNRs, nA, increases from 1 to 20, while the band gap gradually decreases from 3.13 eV to 0.09 eV, as the width of zigzag GNRs, nZ, increases from 1 to 80. For the planar heterojunctions with either armchair-shaped or zigzag-shaped edges, the band gaps can be manipulated by local potentials, leading to a phase transition from semiconductor to metal. In addition, the influence of lattice mismatch on the band gap is also investigated. Full article
(This article belongs to the Topic Advances and Applications of 2D Materials)
Show Figures

Figure 1

15 pages, 5436 KiB  
Article
Reactivity of Atomically Functionalized C-Doped Boron Nitride Nanoribbons and Their Interaction with Organosulfur Compounds
by Francisco Villanueva-Mejia, Pedro Navarro-Santos, Peter Ludwig Rodríguez-Kessler, Rafael Herrera-Bucio and José Luis Rivera
Nanomaterials 2019, 9(3), 452; https://doi.org/10.3390/nano9030452 - 18 Mar 2019
Cited by 9 | Viewed by 3284
Abstract
The electronic and reactivity properties of carbon doped (C-doped) boron nitride nanoribbons (BNNRs) as a function of the carbon concentration were investigated in the framework of the density functional theory within the generalized gradient approximation. We found that the main routes to stabilize [...] Read more.
The electronic and reactivity properties of carbon doped (C-doped) boron nitride nanoribbons (BNNRs) as a function of the carbon concentration were investigated in the framework of the density functional theory within the generalized gradient approximation. We found that the main routes to stabilize energetically the C-doped BNNRs involve substituting boron atoms near the edges. However, the effect of doping on the electronic properties depends of the sublattice where the C atoms are located; for instance, negative doping (partial occupations of electronic states) is found replacing B atoms, whereas positive doping (partial inoccupation of electronic states) is found when replacing N atoms with respect to the pristine BNNRs. Independently of the even or odd number of dopants of the C-doped BNNRs studied in this work, the solutions of the Kohn Sham equations suggest that the most stable solution is the magnetic one. The reactivity of the C-doped BNNRs is inferred from results of the dual descriptor, and it turns out that the main electrophilic sites are located near the dopants along the C-doped BNNRs. The reactivity of these nanostructures is tested by calculating the interaction energy between undesirable organosulfur compounds present in oil fuels on the C-doped BNNRs, finding that organosulfur compounds prefer to interact over nanosurfaces with dopants substituted on the B sublattice of the C-doped BNNRs. Most importantly, the selective C doping on the BNNRs offers the opportunity to tune the properties of the BNNRs to fit novel technological applications. Full article
(This article belongs to the Special Issue Computational Materials Design for Renewable Energy Applications)
Show Figures

Figure 1

19 pages, 6510 KiB  
Review
Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate)
by Ana M. Diez-Pascual
Polymers 2017, 9(7), 260; https://doi.org/10.3390/polym9070260 - 30 Jun 2017
Cited by 48 | Viewed by 11792
Abstract
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties [...] Read more.
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), graphene oxide nanoribbons (GONR), graphite oxide nanoplatelets (GONP), polyethylene glycol-functionalized graphene oxide (PEG-GO), polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs) and hydroxyapatite (HA) nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications. Full article
(This article belongs to the Special Issue Advance of Polymers Applied to Biomedical Applications: Biointerface)
Show Figures

Figure 1

Back to TopTop