Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = black-footed ferret

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1645 KiB  
Review
Towards Practical Conservation Cloning: Understanding the Dichotomy Between the Histories of Commercial and Conservation Cloning
by Ben J. Novak, Stewart Brand, Ryan Phelan, Sasha Plichta, Oliver A. Ryder and Robert J. Wiese
Animals 2025, 15(7), 989; https://doi.org/10.3390/ani15070989 - 29 Mar 2025
Cited by 1 | Viewed by 3415
Abstract
Over 40 years ago, scientists imagined ways cloning could aid conservation of threatened taxa. The cloning of Dolly the sheep from adult somatic cells in 1996 was the breakthrough that finally enabled the conservation potential of the technology. Until the 2020s, conservation cloning [...] Read more.
Over 40 years ago, scientists imagined ways cloning could aid conservation of threatened taxa. The cloning of Dolly the sheep from adult somatic cells in 1996 was the breakthrough that finally enabled the conservation potential of the technology. Until the 2020s, conservation cloning research efforts yielded no management applications, leading many to believe cloning is not yet an effective conservation tool. In strong contrast, domestic taxa are cloned routinely for scientific and commercial purposes. In this review, we sought to understand the reasons for these divergent trends. We scoured peer-reviewed and gray literature and sent direct inquiries to scientists to analyze a more comprehensive history of the field than was analyzed in previous reviews. While most previous reviewers concluded that a lack of reproductive knowledge of wildlife species has hindered advances for wider conservation applications, we found that resource limitations (e.g., numbers of surrogates, sustainable funding) and widely held misconceptions about cloning are significant contributors to the stagnation of the field. Recent successes in cloning programs for the endangered black-footed ferret (Mustela nigripes) and Przewalski’s horse (Equus przewalskii), the world’s first true applied-conservation cloning efforts, are demonstrating that cloning can be used for significant conservation impact in the present. When viewed alongside the long history of cloning achievements, these programs emphasize the value of investing in the science and resources needed to meaningfully integrate cloning into conservation management, especially for species with limited genetic diversity that rely on the maintenance of small populations for many generations while conservationists work to restore habitat and mitigate threats in the wild. Full article
Show Figures

Figure 1

17 pages, 1820 KiB  
Article
The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens
by Tyler Antonelli, Carissa L. Leischner and Adam Hartstone-Rose
Animals 2022, 12(19), 2708; https://doi.org/10.3390/ani12192708 - 9 Oct 2022
Cited by 2 | Viewed by 2847
Abstract
The black-footed ferret (Mustela nigripes), a North American mustelid species, was once found abundantly throughout the Midwest until the extreme decline in prairie dogs (Cynomys spp.), the black-footed ferret’s primary food source, brought the species to near-extinction. Subsequently, the Black-Footed [...] Read more.
The black-footed ferret (Mustela nigripes), a North American mustelid species, was once found abundantly throughout the Midwest until the extreme decline in prairie dogs (Cynomys spp.), the black-footed ferret’s primary food source, brought the species to near-extinction. Subsequently, the Black-Footed Ferret Recovery Program was created in the 1980s with a goal of bringing all remaining individuals of the species into captivity in order to breed the species back to a sustainable population level for successful reintroduction into the wild. While many components of the ferrets’ health were accounted for while in captivity—especially those affecting fecundity—this study aims to assess the effects that captivity may have had on their cranial morphology, something that has not been widely studied in the species. In a previous study, we showed that the captive ferrets had significant oral health problems, and here we aim to document how the captive diet also affected their skull shape. For this study, 23 cranial measurements were taken on the skulls of 271 adult black-footed ferrets and 53 specimens of two closely related species. Skulls were divided based on sex, species, captivity status and phase of captivity and compared for all measurements using stepwise discriminant analysis as well as principal component analysis derived from the combined variables. We found that there are significant differences between captive and wild specimens, some of which are larger than interspecific variation, and that a diet change in the captive specimens likely helped decrease some of these differences. The results suggest that captivity can cause unnatural cranial development and that diet likely has a major impact on cranial morphology. Full article
Show Figures

Figure 1

15 pages, 1046 KiB  
Article
Immunogenicity, Safety, and Anti-Viral Efficacy of a Subunit SARS-CoV-2 Vaccine Candidate in Captive Black-Footed Ferrets (Mustela nigripes) and Their Susceptibility to Viral Challenge
by Ariel E. Leon, Della Garelle, Airn Hartwig, Elizabeth A. Falendysz, Hon S. Ip, Julia S. Lankton, Tyler N. Tretten, Terry R. Spraker, Richard Bowen and Tonie E. Rocke
Viruses 2022, 14(10), 2188; https://doi.org/10.3390/v14102188 - 4 Oct 2022
Cited by 3 | Viewed by 2879
Abstract
A preliminary vaccination trial against the emergent pathogen, SARS-CoV-2, was completed in captive black-footed ferrets (Mustela nigripes; BFF) to assess safety, immunogenicity, and anti-viral efficacy. Vaccination and boosting of 15 BFF with purified SARS-CoV-2 S1 subunit protein produced a nearly 150-fold increase [...] Read more.
A preliminary vaccination trial against the emergent pathogen, SARS-CoV-2, was completed in captive black-footed ferrets (Mustela nigripes; BFF) to assess safety, immunogenicity, and anti-viral efficacy. Vaccination and boosting of 15 BFF with purified SARS-CoV-2 S1 subunit protein produced a nearly 150-fold increase in mean antibody titers compared to pre-vaccination titers. Serum antibody responses were highest in young animals, but in all vaccinees, antibody response declined rapidly. Anti-viral activity from vaccinated and unvaccinated BFF was determined in vitro, as well as in vivo with a passive serum transfer study in mice. Transgenic mice that received BFF serum transfers and were subsequently challenged with SARS-CoV-2 had lung viral loads that negatively correlated (p < 0.05) with the BFF serum titer received. Lastly, an experimental challenge study in a small group of BFF was completed to test susceptibility to SARS-CoV-2. Despite viral replication and shedding in the upper respiratory tract for up to 7 days post-challenge, no clinical disease was observed in either vaccinated or naive animals. The lack of morbidity or mortality observed indicates SARS-CoV-2 is unlikely to affect wild BFF populations, but infected captive animals pose a potential risk, albeit low, for humans and other animals. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

36 pages, 3919 KiB  
Article
Characterisation of the Complete Mitochondrial Genome of Critically Endangered Mustela lutreola (Carnivora: Mustelidae) and Its Phylogenetic and Conservation Implications
by Jakub Skorupski
Genes 2022, 13(1), 125; https://doi.org/10.3390/genes13010125 - 10 Jan 2022
Cited by 10 | Viewed by 6813
Abstract
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and [...] Read more.
In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 2923 KiB  
Article
Long-Term Preservation of Testicular Tissue Integrity and Viability Using Vitrification in the Endangered Black-Footed Ferret (Mustela nigripes)
by David Baruc Cruvinel Lima, Lúcia Daniel Machado da Silva, Paul Marinari and Pierre Comizzoli
Animals 2020, 10(10), 1865; https://doi.org/10.3390/ani10101865 - 13 Oct 2020
Cited by 7 | Viewed by 3856
Abstract
Systematic cryo-banking of semen and testicular tissues is critical to preserve the genetic value of recently deceased or neutered black-footed ferrets (BFFs). Specifically, recovering or producing mature sperm cells from vitrified-warmed issues offers additional options in assisted reproduction. This could, in turn, enhance [...] Read more.
Systematic cryo-banking of semen and testicular tissues is critical to preserve the genetic value of recently deceased or neutered black-footed ferrets (BFFs). Specifically, recovering or producing mature sperm cells from vitrified-warmed issues offers additional options in assisted reproduction. This could, in turn, enhance the genetic management of this rare and endangered species over multiple generations. The objective of the study was to evaluate structural properties, DNA fragmentation, cell viability, and germ cell composition in vitrified testicular tissues from BFFs directly after warming or after warming plus a short in vitro culture period. Tissue biopsies from five adult BFFs were either kept fresh or vitrified with a standard protocol (using dimethylsulphoxide (DMSO) and glycerol) and warmed at 50 °C for 5 s. Some of the warmed samples were then cultured in vitro for 24 h. Fresh, warmed, and warmed/cultured tissues were analyzed using different indicators: histology of seminiferous tubules, intact Sertoli cells (vimentin labeling), DNA integrity, cell viability, germ cell composition (Oct4 and Boule labeling). Percentages of intact seminiferous tubules decreased after vitrification/warming and returned to the level of fresh samples after culture. While percentages of cells labeled with vimentin, with intact DNA integrity, or proportions of viable cells were affected by vitrification/warming, they all reached similar or better levels than the fresh tissue after culture. Proportions of cells labeled with Boule antibodies also improved during in vitro culture post-warming. We demonstrated for the first time that BFF testes subjected to vitrification, rapid warming, and short in vitro culture were viable and maintained the ability to resume germ cell progression. Cryopreserved testicular tissues could potentially contribute to new strategies to enhance BFF assisted reproduction as well as conservation efforts. Full article
(This article belongs to the Special Issue Reproductive Biotechnology in Wildlife)
Show Figures

Figure 1

Back to TopTop