Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = black body radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5260 KiB  
Article
A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters
by Vid Mlačnik, Igor Pušnik and Domen Hudoklin
Appl. Sci. 2025, 15(13), 7618; https://doi.org/10.3390/app15137618 - 7 Jul 2025
Viewed by 314
Abstract
While radiation thermometry is well-developed for laboratory calibrations using high-emissivity sources, the effect of spectral emissivity in real-world conditions, where emissivity ranges from 0 to 1, is usually not considered. Spectral parameters that influence non-contact temperature measurements are often neglected even in laboratory [...] Read more.
While radiation thermometry is well-developed for laboratory calibrations using high-emissivity sources, the effect of spectral emissivity in real-world conditions, where emissivity ranges from 0 to 1, is usually not considered. Spectral parameters that influence non-contact temperature measurements are often neglected even in laboratory conditions. These parameters become more important with decreasing emissivity and at lower temperatures, leading to increased uncertainty contributions to the measurement result. In this manuscript, we analyze the impact of various influential spectral parameters using the constructed spectral Monte Carlo simulation of radiation thermometry. The investigation covers the influence of spectral and related parameters, namely spectral emissivity, reflection temperature, spectral sensitivity and atmospheric parameters of temperature, relative humidity and distance of the path in the atmosphere. Simulation results are compared to experimental results, overestimating sensitivity to humidity by 23–27% and sensitivity to emissivity and reflected temperature within 10% at given conditions. Multiple cases of radiation thermometer (RT) use are simulated for measurement uncertainty: high temperature RT use as the reference in calibration by comparison, the use of a flat plate calibrator for RT calibration, measurements with a RT using emissivity input data from literature with relatively high uncertainty and temperature measurements with a RT using emissivity data, obtained with FTIR spectroscopy with relatively low uncertainty. Findings suggest that spectral uncertainty contributions are often unjustifiably underestimated and neglected, nearing extended uncertainty contribution of 1.94 °C in calibration practices using flat plate calibrators with emissivity within 0.93 and 0.97 and 1.72 °C when radiation thermometers with spectral ranges, susceptible to atmospheric humidity, are used on black bodies. Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

11 pages, 2273 KiB  
Article
Demonstration of Quantum Polarized Microscopy Using an Entangled-Photon Source
by Mousume Samad, Maki Shimizu and Yasuto Hijikata
Photonics 2025, 12(2), 127; https://doi.org/10.3390/photonics12020127 - 31 Jan 2025
Viewed by 1492
Abstract
With the advancement of non-classical light sources such as single-photon and entangled-photon sources, innovative microscopy based on quantum principles has been proposed for traditional microscopy. This paper introduces the experimental demonstration of a quantum polarization microscopic technique that incorporates a quantum-entangled photon source. [...] Read more.
With the advancement of non-classical light sources such as single-photon and entangled-photon sources, innovative microscopy based on quantum principles has been proposed for traditional microscopy. This paper introduces the experimental demonstration of a quantum polarization microscopic technique that incorporates a quantum-entangled photon source. Although the point that employs the variation in polarization angle due to reflection or transmission at the sample is similar to classical polarization microscopy, the method for constructing the image contrast is significantly different. The image contrast is constructed by the coincidence count of signal and idler photons. In the case that the coincidence count is recorded from both the signal and idler photons, the photon statistics resemble a thermal state, similar to the blackbody radiation, but with a significantly higher peak intensity in the second-order autocorrelation function at zero delay that is derived from the coincidence count, while, when the coincidence count is taken from either the signal or idler photon only, although the photon state exhibits a thermal state again, the photon statistics become more dispersive and result in a lower peak intensity of the autocorrelation function. These different thermal states can be switched by slightly changing the photon polarization, which is suddenly aroused within a narrow range of the analyzer angle. The autocorrelation function g2(0) at the thermal state exhibits a sensitivity that is three times higher compared to the classical coincidence count rate, and this concept can be effectively utilized to enhance the contrast of the image. One of the key achievements of our proposed method is ensuring a low power of illumination (in the order of Pico-joules) for constructing the image. In addition, the robustness without any precise setup is also favorable for practical use. This polarization microscopic technique can provide a superior imaging technique compared to the classical method, opening a new frontier for research in material sciences, biology, and other fields requiring high-resolution imaging. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

12 pages, 784 KiB  
Article
Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
by Odilbek Kholmuminov, Bakhtiyor Narzilloev and Bobomurat Ahmedov
Universe 2025, 11(2), 38; https://doi.org/10.3390/universe11020038 - 26 Jan 2025
Viewed by 840
Abstract
In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, α, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine [...] Read more.
In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, α, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine the thermal properties of the disk, finding that increasing α reduces the energy, angular momentum, and effective potential of a test particle orbiting the black hole. We demonstrate that α can mimic the spin of a Kerr black hole in general relativity up to a 0.23 M for the maximum value of α. Our analysis of the thermal radiation flux shows that larger α values increase the flux and shift its maximum towards the central black hole, while far from the black hole, the solution recovers the Schwarzschild limit. The impact of α on the radiative efficiency of the disk is weak but can slightly alter it. Assuming black-body radiation, we observe that the disk’s temperature peaks near its inner edge and is higher for larger α values. Lastly, the electromagnetic spectra reveal that the disk’s luminosity is lower in Einstein–Gauss–Bonnet gravity compared to general relativity, with the peak luminosity shifting toward higher frequencies, corresponding to the soft X-ray band as α increases. Full article
Show Figures

Figure 1

15 pages, 12141 KiB  
Article
Black Body-Inspired Chemically Oxidized Nanostructures with Varied Perforations: A New Frontier in Solar Desalination
by Ajay Kumar Kaviti, Shaik Afzal Mohiuddin and Vineet Singh Sikarwar
Water 2024, 16(23), 3444; https://doi.org/10.3390/w16233444 - 29 Nov 2024
Viewed by 898
Abstract
Ideal black bodies absorb all electromagnetic energy without reflecting it. As it does not reflect or transmit light, it appears black when cold. Heated black bodies emit black body radiation, a temperature-dependent spectrum. This idea helps scientists and engineers comprehend heat radiation and [...] Read more.
Ideal black bodies absorb all electromagnetic energy without reflecting it. As it does not reflect or transmit light, it appears black when cold. Heated black bodies emit black body radiation, a temperature-dependent spectrum. This idea helps scientists and engineers comprehend heat radiation and design efficient solar desalination absorbers. This work uses the black body concept to create three non-contact nanostructured single-slope solar stills (NCNSSSs) with varied perforation diameters (2.4 mm, 3.2 mm, and 3.8 mm). The chemical oxidation of mirror-polished perforated stainless steel 304 sheets resulted in highly absorptive top surfaces with 90% absorptivity. The structures’ bottom surfaces were coated with a commercial high-emissivity coating to make them 85% emissive. The developed non-contact nanostructures absorbed maximum solar light and converted it into infrared radiation using a highly emissive bottom coating and a very absorptive top coating. Water, an excellent absorber of infrared (IR) radiation, readily absorbs the IR radiations and evaporates through the perforations, thus producing a desalination effect. Experiments were conducted parallelly in three NCNSSSs under the same weather conditions at three water depths. It was observed that non-contact nanostructure perforation diameters affected solar still performance. The NCNSSS-3 (3.8 mm) achieved a 9.89% and 13.47% higher productivity than the NCNSSS-2 (3.2 mm) and NCNSSS-1 (2.4 mm) at a 5 mm water depth. Additionally, fouling studies, expedited corrosion studies, and water quality assessments (TDS, salinity, fluoride, chlorides, nitrates, sodium) were performed. Water eminence examinations confirmed that the collected freshwater was bacteria-free and safe to drink. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants)
Show Figures

Figure 1

13 pages, 324 KiB  
Article
Galactic Stellar Black Hole Binaries: Spin Effects on Jet Emissions of High-Energy Gamma-Rays
by Dimitrios Rarras, Theocharis Kosmas, Theodora Papavasileiou and Odysseas Kosmas
Particles 2024, 7(3), 792-804; https://doi.org/10.3390/particles7030046 - 3 Sep 2024
Cited by 2 | Viewed by 1765
Abstract
In the last few decades, galactic stellar black hole X-ray binary systems (BHXRBs) have aroused intense observational and theoretical research efforts specifically focusing on their multi-messenger emissions (radio waves, X-rays, γ-rays, neutrinos, etc.). In this work, we investigate jet emissions of high-energy [...] Read more.
In the last few decades, galactic stellar black hole X-ray binary systems (BHXRBs) have aroused intense observational and theoretical research efforts specifically focusing on their multi-messenger emissions (radio waves, X-rays, γ-rays, neutrinos, etc.). In this work, we investigate jet emissions of high-energy neutrinos and gamma-rays created through several hadronic and leptonic processes taking place within the jets. We pay special attention to the effect of the black hole’s spin (Kerr black holes) on the differential fluxes of photons originating from synchrotron emission and inverse Compton scattering and specifically on their absorption due to the accretion disk’s black-body radiation. The black hole’s spin (dimensionless spin parameter a*) enters into the calculations through the radius of the innermost circular orbit around the black hole, the RISCO parameter, assumed to be the inner radius of the accretion disk, which determines its optical depth τdisk. In our results, the differential photon fluxes after the absorption effect are depicted as a function of the photon energy in the range 1GeV E103GeV. It is worth noting that when the black holes’ spin (α*) increases, the differential photon flux becomes significantly lower. Full article
Show Figures

Figure 1

23 pages, 1150 KiB  
Article
Entanglement Entropy of Free Fermions with a Random Matrix as a One-Body Hamiltonian
by Leonid Pastur and Victor Slavin
Entropy 2024, 26(7), 564; https://doi.org/10.3390/e26070564 - 30 Jun 2024
Viewed by 1360
Abstract
We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1LN. A widely accepted mathematical version [...] Read more.
We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1LN. A widely accepted mathematical version of this inequality is the asymptotic regime of successive limits: first the macroscopic limit N, then an asymptotic analysis of the entanglement entropy as L. In this paper, we consider another version of the above inequality: the regime of asymptotically proportional L and N, i.e., the simultaneous limits L,N,L/Nλ>0. Specifically, we consider a system of free fermions that is in its ground state, and such that its one-body Hamiltonian is a large random matrix, which is often used to model long-range hopping. By using random matrix theory, we show that in this case, the entanglement entropy obeys the volume law known for systems with short-range hopping but described either by a mixed state or a pure strongly excited state of the Hamiltonian. We also give streamlined proof of Page’s formula for the entanglement entropy of black hole radiation for a wide class of typical ground states, thereby proving the universality and the typicality of the formula. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

11 pages, 4599 KiB  
Communication
Emission Spectroscopy-Based Sensor System to Correlate the In-Cylinder Combustion Temperature of a Diesel Engine to NOx Emissions
by Jürgen Wultschner, Ingo Schmitz, Stephan Révidat, Johannes Ullrich and Thomas Seeger
Sensors 2024, 24(8), 2459; https://doi.org/10.3390/s24082459 - 11 Apr 2024
Viewed by 1415
Abstract
Due to a rising importance of the reduction of pollutant, produced by conventional energy technologies, the knowledge of pollutant forming processes during a combustion is of great interest. In this study the in-cylinder temperature, of a near series diesel engine, is examined with [...] Read more.
Due to a rising importance of the reduction of pollutant, produced by conventional energy technologies, the knowledge of pollutant forming processes during a combustion is of great interest. In this study the in-cylinder temperature, of a near series diesel engine, is examined with a minimal invasive emission spectroscopy sensor. The soot, nearly a black body radiator, emits light, which is spectrally detected and evaluated with a modified function of Planck’s law. The results show a good correlation between the determined temperatures and the NOx concentration, measured in the exhaust gas of the engine, during a variety of engine operating points. A standard deviation between 25 K and 49 K was obtained for the in-cylinder temperature measurements. Full article
(This article belongs to the Special Issue Optical Spectroscopy for Sensing, Monitoring and Analysis)
Show Figures

Figure 1

13 pages, 3098 KiB  
Case Report
Light and the Brain: A Clinical Case Depicting the Effects of Light on Brainwaves and Possible Presence of Plasma-like Brain Energy
by Zamzuri Idris, Zaitun Zakaria, Ang Song Yee, Diana Noma Fitzrol, Muhammad Ihfaz Ismail, Abdul Rahman Izaini Ghani, Jafri Malin Abdullah, Mohd Hasyizan Hassan and Nursakinah Suardi
Brain Sci. 2024, 14(4), 308; https://doi.org/10.3390/brainsci14040308 - 25 Mar 2024
Cited by 2 | Viewed by 3399
Abstract
Light is an electromagnetic radiation that has visible and invisible wavelength spectrums. Visible light can only be detected by the eyes through the optic pathways. With the presence of the scalp, cranium, and meninges, the brain is seen as being protected from direct [...] Read more.
Light is an electromagnetic radiation that has visible and invisible wavelength spectrums. Visible light can only be detected by the eyes through the optic pathways. With the presence of the scalp, cranium, and meninges, the brain is seen as being protected from direct exposure to light. For that reason, the brain can be viewed as a black body lying inside a black box. In physics, a black body tends to be in thermal equilibrium with its environment and can tightly regulate its temperature via thermodynamic principles. Therefore, a healthy brain inside a black box should not be exposed to light. On the contrary, photobiomodulation, a form of light therapy for the brain, has been shown to have beneficial effects on some neurological conditions. The proposed underlying mechanisms are multiple. Herein, we present our intraoperative findings of rapid electrocorticographic brainwave changes when the brain was shone directly with different wavelengths of light during awake brain surgery. Our findings provide literature evidence for light’s ability to influence human brain energy and function. Our proposed mechanism for these rapid changes is the presence of plasma-like energy inside the brain, which causes fast brain activities that are akin to lightning strikes. Full article
Show Figures

Figure 1

15 pages, 1678 KiB  
Article
Controlling Thermal Radiation in Photonic Quasicrystals Containing Epsilon-Negative Metamaterials
by Ameneh Mikaeeli, Alireza Keshavarz, Ali Baseri and Michal Pawlak
Appl. Sci. 2023, 13(23), 12947; https://doi.org/10.3390/app132312947 - 4 Dec 2023
Cited by 3 | Viewed by 1525
Abstract
The transfer matrix approach is used to study the optical characteristics of thermal radiation in a one-dimensional photonic crystal (1DPC) with metamaterial. In this method, every layer within the multilayer structure is associated with its specific transfer matrix. Subsequently, it links the incident [...] Read more.
The transfer matrix approach is used to study the optical characteristics of thermal radiation in a one-dimensional photonic crystal (1DPC) with metamaterial. In this method, every layer within the multilayer structure is associated with its specific transfer matrix. Subsequently, it links the incident beam to the next layer from the previous layer. The proposed structure is composed of three types of materials, namely InSb, ZrO2, and Teflon, and one type of epsilon-negative (ENG) metamaterial and is organized in accordance with the laws of sequencing. The semiconductor InSb has the capability to adjust bandgaps by utilizing its thermally responsive permittivity, allowing for tunability with temperature changes, while the metamaterial modifies the bandgaps according to its negative permittivity. Using quasi-periodic shows that, in contrast to employing absolute periodic arrangements, it produces more diverse results in modifying the structure’s band-gaps. Using a new sequence arrangement mixed-quasi-periodic (MQP) structure, which is a combination of two quasi periodic structures, provides more freedom of action for modifying the properties of the medium than periodic arrangements do. The ability to control thermal radiation is crucial in a range of optical applications since it is frequently unpolarized and incoherent in both space and time. These configurations allow for the suppression and emission of thermal radiation in a certain frequency range due to their fundamental nature as photonic band-gaps (PBGs). So, we are able to control the thermal radiation by changing the structure arrangement. Here, the We use an indirect method based on the second Kirchoff law for thermal radiation to investigate the emittance of black bodies based on a well-known transfer matrix technique. We can measure the transmission and reflection coefficients with associated transmittance and reflectance, T and R, respectively. Here, the effects of several parameters, including the input beam’s angle, polarization, and period on tailoring the thermal radiation spectrum of the proposed structure, are studied. The results show that in some frequency bands, thermal radiation exceeded the black body limit. There were also good results in terms of complete stop bands for both TE and TM polarization at different incident angles and frequencies. This study produces encouraging results for the creation of Terahertz (THz) filters and selective thermal emitters. The tunability of our media is a crucial factor that influences the efficiency and function of our desired photonic outcome. Therefore, exploiting MQP sequences or arrangements is a promising strategy, as it allows us to rearrange our media more flexibly than quasi-periodic sequences and thus achieve our optimal result. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

24 pages, 8960 KiB  
Article
Regional Thermal Radiation Characteristics of FY Satellite Remote Sensing Based on Big Data Analysis
by Tao Wen, Congxin Wei, Zhenyi Wang, Linzhu Wang, Zihan Yang and Tingting Gu
Sensors 2023, 23(20), 8446; https://doi.org/10.3390/s23208446 - 13 Oct 2023
Viewed by 1504
Abstract
It is of great significance to study the thermal radiation anomalies of earthquake swarms in the same area in terms of selecting abnormal characteristic determination parameters, optimizing and determining the processing model, and understanding the abnormal machine. In this paper, we investigated short-term [...] Read more.
It is of great significance to study the thermal radiation anomalies of earthquake swarms in the same area in terms of selecting abnormal characteristic determination parameters, optimizing and determining the processing model, and understanding the abnormal machine. In this paper, we investigated short-term and long-term thermal radiation anomalies induced by earthquake swarms in Iran and Pakistan between 2007 and 2016. The anomalies were extracted from infrared remote sensing black body temperature data from the China Geostationary Meteorological Satellites (FY-2C/2E/2F/2G) using the multiscale time-frequency relative power spectrum (MS T-FRPS) method. By analyzing and summarizing the thermal radiation anomalies of series earthquake groups with consistency law through a stable and reliable MS T-FRPS method, we first obtained the relationship between anomalies and ShakeMaps from USGS and proposed the anomaly regional indicator (ARI) to determine seismic anomalies and the magnitude decision factor (MDF) to determine seismic magnitude. In addition, we explored the following discussions: earthquake impact on regional thermal radiation background and the relationship between thermal anomalies and earthquake magnitude and the like. Future research directions using the MS T-FRPS method to characterize regional thermal radiation anomalies induced by strong earthquakes could help improve the accuracy of earthquake magnitude determination. Full article
Show Figures

Figure 1

18 pages, 4188 KiB  
Review
Methods, Thermodynamic Applications, and Habitat Implications of Physical and Spectral Properties of Hair and Haircoats in Cattle
by Kifle G. Gebremedhin, Vinicius D. F. C. Fonseca and Alex S. C. Maia
Animals 2023, 13(19), 3087; https://doi.org/10.3390/ani13193087 - 3 Oct 2023
Cited by 5 | Viewed by 1971
Abstract
The physical properties (hair diameter, hair length, haircoat depth and haircoat density) and spectral properties (absorptivity, reflectivity, transmissivity) of the hair and haircoat of cattle are inputs to heat and moisture exchange between the skin surface and the surrounding environment, and thus play [...] Read more.
The physical properties (hair diameter, hair length, haircoat depth and haircoat density) and spectral properties (absorptivity, reflectivity, transmissivity) of the hair and haircoat of cattle are inputs to heat and moisture exchange between the skin surface and the surrounding environment, and thus play a critical role in body temperature regulation. Physical and spectral properties of haircoats also play an important role in protecting the skin against penetration of ultraviolet radiation. The focus of this review is to identify accurate and consistent measurement procedures of these properties. Additionally, the paper shows the utilization of the properties on heat exchange models and their implications on voluntary thermoregulation of cattle. To highlight the effects and benefits of haircoat color vis-à-vis solar radiation and its implication on ecological habitation, a brief explanation is provided using polar bears (white haircoat in a cold environment) and black goats in a hot desert environment. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

22 pages, 6091 KiB  
Article
Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil
by Welligton Conceição da Silva, Jamile Andréa Rodrigues da Silva, Éder Bruno Rebelo da Silva, Antônio Vinicius Correa Barbosa, Carlos Eduardo Lima Sousa, Katarina Cardoso de Carvalho, Maria Roseane Pereira dos Santos, Kedson Alexandri Lobo Neves, Lucieta Guerreiro Martorano, Raimundo Nonato Colares Camargo Júnior and José de Brito Lourenço-Júnior
Animals 2023, 13(17), 2735; https://doi.org/10.3390/ani13172735 - 28 Aug 2023
Cited by 11 | Viewed by 2688
Abstract
In the Lower Amazon mesoregion, there are basically three types of production systems: the traditional (without shade and no bathing area), the silvopastoral (with shade and no bathing area), and the integrated (with shade and bathing area). It is considered that the type [...] Read more.
In the Lower Amazon mesoregion, there are basically three types of production systems: the traditional (without shade and no bathing area), the silvopastoral (with shade and no bathing area), and the integrated (with shade and bathing area). It is considered that the type of production system influences the thermal comfort and productivity of cattle, so this research aims to evaluate the influence of these three types of production systems on the thermoregulation of Nellore cattle. The experiment was carried out on a rural property for raising cattle, located in Mojuí dos Campos, Pará, Brazil, during the transition period (June/July). Thirty bovine males (not castrated, aged between 18 and 20 months, average weight of 250 ± 36 kg, body condition score of 3.5, clinically healthy) were randomly divided into three groups: Silvopastoral System—SS (n = 10), Traditional System—TS (n = 10), and Integrated System—IS (n = 10). Climate variables were collected (air temperature (AT °C), relative humidity (RH %), wind speed (WS, m/s), solar radiation (SR), black globe temperature (BGT °C), and physiological parameters, such as respiratory rate (RR) and rectal temperature (RT)) at 6 a.m., 12 p.m., 6 p.m., and 12 a.m. to determine the thermal comfort situation of the animals. Thermographic images of the environment and animals were captured in order to obtain the body surface temperature (BST) through infrared thermography. The Benezra Thermal Comfort Index (BTCI), Environmental Stress Index (ESI), Equivalent Temperature Index (ETI), and Iberian Heat Tolerance Index (Iberian HTI) were used. The results showed that the silvopastoral system, with shading by chestnut trees and an ample vegetative area, presented better thermal conditions, with an average of 28.98 °C, in comparison with the traditional system (35.93 °C) and the integrated one (34.11 °C). It was observed that the body surface temperature of cattle did not differ significantly between the anatomical regions of the body and the studied systems (p > 0.05). As for the respiratory rate, the traditional system registered higher values, with an average of 41 movements per minute, indicating possible thermal stress (p < 0.05). The thermal comfort indices revealed that all systems presented moderate stress conditions during times of higher solar intensity. It is concluded that the silvopastoral system proved to be more favorable for cattle, providing shade and reducing thermal stress, which may have a positive impact on animal welfare and productivity in this region. Full article
Show Figures

Figure 1

25 pages, 5773 KiB  
Article
A Traceable Spectral Radiation Model of Radiation Thermometry
by Vid Mlačnik and Igor Pušnik
Appl. Sci. 2023, 13(8), 4973; https://doi.org/10.3390/app13084973 - 15 Apr 2023
Cited by 3 | Viewed by 1966
Abstract
Despite great technical capabilities, the theory of non-contact temperature measurement is usually not fully applicable to the use of measuring instruments in practice. While black body calibrations and black body radiation thermometry (BBRT) are in practice well established and easy to accomplish, this [...] Read more.
Despite great technical capabilities, the theory of non-contact temperature measurement is usually not fully applicable to the use of measuring instruments in practice. While black body calibrations and black body radiation thermometry (BBRT) are in practice well established and easy to accomplish, this calibration protocol is never fully applicable to measurements of real objects under real conditions. Currently, the best approximation to real-world radiation thermometry is grey body radiation thermometry (GBRT), which is supported by most measuring instruments to date. Nevertheless, the metrological requirements necessitate traceability; therefore, real body radiation thermometry (RBRT) method is required for temperature measurements of real bodies. This article documents the current state of temperature calculation algorithms for radiation thermometers and the creation of a traceable model for radiation thermometry of real bodies that uses an inverse model of the system of measurement to compensate for the loss of data caused by spectral integration, which occurs when thermal radiation is absorbed on the active surface of the sensor. To solve this problem, a hybrid model is proposed in which the spectral input parameters are converted to scalar inputs of a traditional scalar inverse model for GBRT. The method for calculating effective parameters, which corresponds to a system of measurement, is proposed and verified with the theoretical simulation model of non-contact thermometry. The sum of effective instrumental parameters is presented for different temperatures to show that the rule of GBRT, according to which the sum of instrumental emissivity and instrumental reflectivity is equal to 1, does not apply to RBRT. Using the derived models of radiation thermometry, the uncertainty of radiation thermometry due to the uncertainty of spectral emissivity was analysed by simulated worst-case measurements through temperature ranges of various radiation thermometers. This newly developed model for RBRT with known uncertainty of measurement enables traceable measurements using radiation thermometry under any conditions. Full article
(This article belongs to the Special Issue Recent Progress in Infrared Thermography)
Show Figures

Figure 1

10 pages, 518 KiB  
Article
Zebrafish Larval Melanophores Respond to Electromagnetic Fields Exposure
by Vincenzo Nassisi, Aurora Mazzei, Gianmarco Del Vecchio, Antonio Calisi, Luciano Velardi, Pietro Alifano and Tiziano Verri
Appl. Sci. 2023, 13(8), 4721; https://doi.org/10.3390/app13084721 - 9 Apr 2023
Cited by 2 | Viewed by 2322
Abstract
Groups of zebrafish (Danio rerio) embryos receive radiations of different frequencies and intensities by means of new prototype devices. They are exposed to static (B0, 0 Hz), extremely low-frequency (ELF, 0.2 Hz), low-frequency (LF, 270 kHz), very-high-frequency (VHF, 100 [...] Read more.
Groups of zebrafish (Danio rerio) embryos receive radiations of different frequencies and intensities by means of new prototype devices. They are exposed to static (B0, 0 Hz), extremely low-frequency (ELF, 0.2 Hz), low-frequency (LF, 270 kHz), very-high-frequency (VHF, 100 MHz), and ultra-high-frequency (UHF, 900 MHz) field irradiations. The applied magnetic field intensities are 40 mT at 0 Hz, 40 mT at 0.2 Hz, 470 μT at 270 kHz, 240 nT at 100 MHz, and 240 nT at 900 MHz. Such combinations are meant to cover environmental radiations from geomagnetic fields and cosmic magnetism to electromagnetic radiation of electronic instruments such as GSM and UMTS transmission-mode mobile systems. For each frequency, fish are monitored for up to 5 days. Unexposed embryos are used as controls. Notably, exposure to the different radiations brings alterations of body pigmentation in zebrafish embryos and larvae in terms of total number, area, and morphology of (black) melanophores. This research may contribute to evaluating the roles and effects of magnetic radiation on living matter. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

14 pages, 902 KiB  
Article
The Shapes of Stellar Spectra
by Carlos Allende Prieto
Atoms 2023, 11(3), 61; https://doi.org/10.3390/atoms11030061 - 20 Mar 2023
Cited by 4 | Viewed by 2535
Abstract
Stellar atmospheres separate the hot and dense stellar interiors from the emptiness of space. Radiation escapes from the outermost layers of a star, carrying direct physical information. Underneath the atmosphere, the very high opacity keeps radiation thermalized and resembling a black body with [...] Read more.
Stellar atmospheres separate the hot and dense stellar interiors from the emptiness of space. Radiation escapes from the outermost layers of a star, carrying direct physical information. Underneath the atmosphere, the very high opacity keeps radiation thermalized and resembling a black body with the local temperature. In the atmosphere the opacity drops, and radiative energy leaks out, which is redistributed in wavelength according to the physical processes by which matter and radiation interact, in particular photoionization. In this article, I will evaluate the role of photoionization in shaping the stellar energy distribution of stars. To that end, I employ simple, state-of-the-art plane-parallel model atmospheres and a spectral synthesis code, dissecting the effects of photoionization from different chemical elements and species, for stars of different masses in the range of 0.3 to 2 M. I examine and interpret the changes in the observed spectral energy distributions of the stars as a function of the atmospheric parameters. The photoionization of atomic hydrogen and H are the most relevant contributors to the continuum opacity in the optical and near-infrared regions, while heavier elements become important in the ultraviolet region. In the spectra of the coolest stars (spectral types M and later), the continuum shape from photoionization is no longer recognizable due to the accumulation of lines, mainly from molecules. These facts have been known for a long time, but the calculations presented provide an updated quantitative evaluation and insight into the role of photoionization on the structure of stellar atmospheres. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

Back to TopTop