Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = biotite geochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 331
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 317
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 12852 KiB  
Article
Zircon U-Pb Geochronology and Geochemical Constraints of Tiancang Granites, Southern Beishan Orogenic Belt: Implications for Early Permian Magmatism and Tectonic Evolution
by Chao Teng, Meiling Dong, Xinjie Yang, Deng Xiao, Jie Shao, Jun Cao, Yalatu Su and Wendong Lu
Minerals 2025, 15(4), 426; https://doi.org/10.3390/min15040426 - 19 Apr 2025
Cited by 1 | Viewed by 399
Abstract
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most [...] Read more.
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most extensive spatial-temporal distribution in this belt, remains controversial in its geodynamic context: whether it formed in a persistent subduction regime or was associated with mantle plume activity or post-collisional extension within a rift setting. This study presents an integrated analysis of petrology, zircon U-Pb geochronology, in situ Hf isotopes, and whole-rock geochemistry of Early Permian granites from the Tiancang area in the southern Beishan Orogenic Belt, complemented by regional comparative studies. Tiancang granites comprise biotite monzogranite, monzogranite, and syenogranite. Zircon U-Pb dating of four samples yields crystallization ages of 279.3–274.1 Ma. These granites are classified as high-K calc-alkaline to calc-alkaline, metaluminous to weakly peraluminous I-type granites. Geochemical signatures reveal the following: (1) low total rare earth element (REE) concentrations with light REE enrichment ((La/Yb)N = 3.26–11.39); (2) pronounced negative Eu anomalies (Eu/Eu* = 0.47–0.71) and subordinate Ce anomalies; (3) enrichment in large-ion lithophile elements (LILEs: Rb, Th, U, K) coupled with depletion in high-field-strength elements (HFSEs: Nb, Ta, P, Zr, Ti); (4) zircon εHf(t) values ranging from −10.5 to −0.1, corresponding to Hf crustal model ages (TDMC) of 1.96–1.30 Ga. These features collectively indicate that the Tiancang granites originated predominantly from partial melting of Paleoproterozoic–Mesoproterozoic crustal sources with variable mantle contributions, followed by extensive fractional crystallization. Regional correlations demonstrate near-synchronous magmatic activity across the southern/northern Beishan and eastern Tianshan Orogenic belts. The widespread Permian granitoids, combined with post-collisional magmatic suites and rift-related stratigraphic sequences, provide compelling evidence for a continental rift setting in the southern Beishan during the Early Permian. This tectonic regime transition likely began with lithospheric delamination after the Late Carboniferous–Early Permian collisional orogeny, which triggered asthenospheric upwelling and crustal thinning. These processes ultimately led to the terminal closure of the Paleo-Asian Ocean’s southern branch, followed by intracontinental evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

17 pages, 6334 KiB  
Article
Petrogenesis and Geochronology of Late Devonian Intrusive Rocks in Eastern Tianshan, Xinjiang, China: Subduction Constraints of the North Tianshan Ocean
by Yong Meng, Xin Zhang, Kai Wang, Haibo Zhao, Yuan Han, Yaogang Qi and Zuochen Li
Minerals 2024, 14(11), 1144; https://doi.org/10.3390/min14111144 - 11 Nov 2024
Viewed by 1022
Abstract
We conducted a study on the petrology, geochemistry, and zircon U–Pb dating of Late Devonian intrusive rocks in the Tulargen area of the Eastern Tianshan Orogenic Belt, Xinjiang, China. These intrusive rocks primarily consist of gabbro (382 ± 5 Ma), tonalite (370.9 ± [...] Read more.
We conducted a study on the petrology, geochemistry, and zircon U–Pb dating of Late Devonian intrusive rocks in the Tulargen area of the Eastern Tianshan Orogenic Belt, Xinjiang, China. These intrusive rocks primarily consist of gabbro (382 ± 5 Ma), tonalite (370.9 ± 2.7 Ma), and biotite monzogranite (362.8 ± 4.4 Ma). Gabbro belongs to the low-K calc-alkaline series of quasi-aluminous rocks, with a high Al2O3 content (16.46–20.34 wt.%) and Mg# value (64.55–67.73). Tonalite and biotite monzogranite, which belong to the high-K calc-alkaline series, are metaluminous or weakly peraluminous and also exhibit high Al2O3 contents (14.6–15.87 wt.%) and Mg# values (40.12–62.47). These rocks are enriched in light rare-earth and large-ion lithophile elements (Rb, Ba, and K) and depleted in heavy rare-earth and high-field-strength elements (e.g., Ta, Nb, and Ti), characteristics typical of island-arc magmatic rocks. Gabbro melts are primarily derived from the mantle and result from the partial melting of a depleted mantle that has undergone fluid metasomatism due to subducted plates. Tonalite exhibits high 176Hf/177Hf and εHf(t) values, with a younger two-stage model age (tDM2) derived from partial juvenile crust melting. The source magma of the biotite monzogranite originated from partial metabasalt melting at a medium crustal depth combined with a new lower crustal material. We concluded that the Late Devonian intrusive rocks in this area formed within the island-arc tectonic setting are associated with the subduction of the North Tianshan Ocean. Full article
(This article belongs to the Special Issue Metallogenesis of the Central Asian Orogenic Belt)
Show Figures

Figure 1

24 pages, 6880 KiB  
Article
Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization
by Yang Liu, De-You Sun, Yang Gao, Hong-Chao Wang, Yu-Xin Ma, Jun Xu and Xin-Tong Liu
Minerals 2024, 14(11), 1104; https://doi.org/10.3390/min14111104 - 29 Oct 2024
Viewed by 892
Abstract
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, [...] Read more.
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, while the W mineralization is most closely related to greisenization. Zircon samples from granodiorite, biotite monzogranite, granodiorite porphyry, and syenogranite in the Waxing deposit yielded U-Pb ages of 172.3 Ma, 172.8 Ma, 173.0 Ma, and 171.4 Ma, respectively. Six molybdenite samples from porphyry Mo ores yielded a Re-Os isochron age of 172.0 ± 1.1 Ma. The granitoids in the ore district are relatively high in total alkali (Na2O + K2O), are metaluminous to weakly peraluminous, and are classified as I-type granitoids. The zircon samples from all granitoids showed a relatively consistent Hf isotopic composition, as shown by positive εHf(t) values (3.1–8.3) and young TDM2 ages (0.69–1.25 Ga). These results, combined with the whole-rock geochemistry, suggest that the magma source of these rocks most likely derived from partial melting of a juvenile middle-lower continental crust, with a minor contribution from the mantle. These granitoids have compositional characteristics of adakites such as relatively high Sr contents (e.g., >400 ppm) and Sr/Y ratios (e.g., >33), as well as weak Eu anomalies (e.g., Eu/Eu* = 0.8–1.1), indicating extensive fractionation crystallization of a hydrous magma. The apatite geochemistry indicates that the ore-related magma in Waxing is F-rich and has a relatively low content of sulfur. The zircon geochemistry reveals that the granodiorite, biotite monzogranite, and granodiorite porphyry have relatively high oxygen fugacity (i.e., ΔFMQ = +1.1~1.3), whereas the fO2 values of the granite porphyry and syenogranite are relatively low (i.e., ΔFMQ = +0.1~0.5). The whole-rock and mineral geochemistry suggest that the Mo mineralization in Waxing is probably genetically related to granitoids (i.e., granodiorite, biotite monzogranite, and granodiorite porphyry), with higher oxygen fugacity and a high water content, whereas the magmatic S concentration is not the key factor controlling the mineralization. A comparison of the geochemical compositions of ore-forming and barren stocks for porphyry Mo deposits in the LXZR showed that geochemical ratios, including Eu/Eu* (>0.8), 10,000*(Eu/Eu*)/Y (>600), Sr/Y (>33), and V/Sc (>8), could be effective indicators in discriminating fertile granitoids for porphyry Mo deposits from barren ones in the region. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

28 pages, 35997 KiB  
Article
Evaluation of Granite Fertility Utilizing Porphyry Indicator Minerals (Zircon, Apatite, and Titanite) and Geochemical Data: A Case Study from an Emerging Metallogenic Province in the Taimyr Peninsula, Siberian High Arctic
by Stepan V. Berzin, Dmitry L. Konopelko, Sergei V. Petrov, Vasiliy F. Proskurnin, Evgeny I. Berzon, Mikhail Yu. Kurapov, Tamara A. Golovina, Natalya Ya. Chernenko, Vasiliy S. Chervyakovskiy, Roman S. Palamarchuk and Elena M. Andreeva
Minerals 2024, 14(11), 1065; https://doi.org/10.3390/min14111065 - 23 Oct 2024
Viewed by 1800
Abstract
The Taimyr Peninsula in the Russian High Arctic comprises a late Paleozoic-early Mesozoic collisional belt where several porphyry-type mineralization occurrences were identified during the last decade, making this area a potential exploration target for Cu-Mo deposits. In order to further evaluate the metallogenic [...] Read more.
The Taimyr Peninsula in the Russian High Arctic comprises a late Paleozoic-early Mesozoic collisional belt where several porphyry-type mineralization occurrences were identified during the last decade, making this area a potential exploration target for Cu-Mo deposits. In order to further evaluate the metallogenic potential of the poorly outcropped northeastern part of Taimyr, samples from seven granitoid intrusions were investigated in this study aimed to evaluate the granite fertility based on petrography, geochemistry, and composition of porphyry indicator minerals (zircon, apatite, and titanite). The studied intrusions represent small to moderate-sized bodies (40–800 km2) composed of biotite (±amphibole) quartz monzonites, granodiorites, granites, and biotite leucogranites that formed in the course of late Paleozoic-early Mesozoic tectono-magmatic events at the Siberian margins. The late Carboniferous Tessemsky massif represents suprasubduction granitoid series, while the Pekinskiy, Shirokinskiy, Dorozhinskiy, Kristifensenskiy, and Yuzhno-Lodochnikovskiy massifs are correlated with the early Triassic Siberian Traps LIP. The rocks of intrusions comprise a relatively uniform geochemically, predominantly magnesian, slightly peraluminous, calc-alkaline high-K amphibole-bearing I-type granitoid series with adakitic affinity, where Triassic plume-related granitoids inherit geochemical signatures of Carboniferous supra-subduction granitoids, and all rock types are marked by enrichment in LILE and negative Ta, Nb, and Ti anomalies. It is suggested that the adakitic geochemical characteristics of the Taimyr granites are a result of derivation from a relatively homogeneous mafic lower crustal source that formed at the stage of Carboniferous continental subduction and continued to produce granitic melts in the course of the early Mesozoic magmatic evolution. Whole rock geochemistry and composition of porphyry mineral indicators (zircon, apatite, and titanite) indicate that the Taimyr granites crystallized from oxidized water-saturated magmas at moderate temperatures, with the majority of samples showing characteristics typical for porphyry-fertile granites worldwide (fO2 = ΔFMQ +1 to +3 with zircon Eu/Eu* > 0.4 and apatite SO3 > 0.2 wt.%). Data from Dorozhinskiy, Kristifensenskiy, Pekinskiy, and Tessemskiy intrusions fully match geochemical criteria for porphyry-fertile granitoids, and these massifs are considered the most prospective for Cu-Mo mineralization. Granites from Shirokinskiy and Yuzhno-Lodochnikovskiy intrusions only partially match compositional constraints for fertile melts and can be considered as second-tier exploration targets. Finally, available data for the Simsovsky massif preclude its classification as a porphyry-fertile body. These conclusions are in line with previously developed exploration criteria for the northeastern Taimyr, showing that geochemical indicators of granite-fertility can be used on a regional scale in parallel with other exploration methods. Full article
Show Figures

Figure 1

17 pages, 8402 KiB  
Article
Geochemistry and Zircon U–Pb Chronology of Jinchanshan Gold-Hosted Granitoids, Inner Mongolia: Implications for Petrogenesis and Geodynamic Evolution
by Yujiao Shi, Jianchao Wang, Qian Liao, Wenguang Wei, Qiming Zhou, Yanping Tang, Yi Tian, Jiacai Li, Saleh Ibrahim Bute and Yigan Lu
Minerals 2024, 14(11), 1059; https://doi.org/10.3390/min14111059 - 22 Oct 2024
Viewed by 985
Abstract
Jinchanshan is a medium-sized, granitoid-hosted gold deposit located in the Kalaqin area of Inner Mongolia. Mineralization predominantly occurs in the contact zone between biotite granites and quartz porphyry rocks, associated with the Jinchanshan minor intrusion, suggesting a genetic link to the granitoid-hosted gold [...] Read more.
Jinchanshan is a medium-sized, granitoid-hosted gold deposit located in the Kalaqin area of Inner Mongolia. Mineralization predominantly occurs in the contact zone between biotite granites and quartz porphyry rocks, associated with the Jinchanshan minor intrusion, suggesting a genetic link to the granitoid-hosted gold deposit. In this study, the petrography, geochemistry, and LA-ICP-MS zircon U–Pb chronology of these two granitoid samples were studied. The results indicate that the zircon U–Pb age of the biotite granites is 127.9 ± 3.0 Ma, while that of the quartz porphyry is 121.4 ± 1.5 Ma, both dating back to the Early Cretaceous. The average SiO2 content of the granites is 66.64%, and the rocks have high total alkali (K2O + Na2O) content, averaging 9.13%. The average K2O content is 4.39%, with a K2O/Na2O ratio of 0.93. The quartz porphyry rocks are enriched in SiO2 (74.41%–76.85%) and have high Na2O + K2O content (8.67%–9.59%), but are low in MgO (0.03%–0.09%), CaO (0.44%–1.02 %), and TiO2 (0.08%–0.12%). Most samples of the biotite granite and the quartz porphyry rocks exhibit high-K peraluminous and medium-K calc-alkaline characteristics, respectively. Both rock types are enriched in Rb, Th, U, K, Zr, Hf, and Gd and relatively depleted in Ba, Sr, P, Ti, Nb, Ta, and Eu, with a pronounced negative Eu anomaly. The biotite granites show high ∑LREE/∑HREE ratios (6.1–6.9), while the quartz porphyry rocks exhibit lower ratios (2.0–4.2). Both granitoid types have elevated FeOT content and FeOT/(FeOT + MgO) ratios, indicating that the Jinchanshan granitoids are A-type granites. The zircon U–Pb ages, combined with the regional tectonic settings, suggest that these granitoids formed during large-scale metallogenic events in the Early Cretaceous, within the Yanshanian post-orogenic extensional tectonic regime. This is consistent with the lithospheric thinning and extensional processes in Eastern China during this period. Full article
(This article belongs to the Special Issue Critical Metals on Land and in the Ocean)
Show Figures

Figure 1

21 pages, 9535 KiB  
Article
Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China
by Zhong Tang, Zewei Pan, Tianxue Ming, Rong Li, Xiaohu He, Hanjie Wen and Wenxiu Yu
Minerals 2024, 14(9), 933; https://doi.org/10.3390/min14090933 - 12 Sep 2024
Viewed by 1019
Abstract
The ion-adsorption-type rare earth element (iREE) deposits dominantly supply global resources of the heavy rare earth elements (HREEs), which have a critical role in a variety of advanced technological applications. The initial enrichment of REEs in the parent granites controls the formation of [...] Read more.
The ion-adsorption-type rare earth element (iREE) deposits dominantly supply global resources of the heavy rare earth elements (HREEs), which have a critical role in a variety of advanced technological applications. The initial enrichment of REEs in the parent granites controls the formation of iREE deposits. Many Mesozoic and Cenozoic granites are associated with iREE mineralization in the Tengchong block, Southwest China. However, it is unclear how vital the mineralogical and geochemical characteristics of these granites are to the formation of iREE mineralization. We conducted geochronology, geochemistry, and Hf isotope analyses of the Yingpanshan–Damanbie granitoids associated with the iREE deposit in the Tengchong block with the aims to discuss their petrogenesis and illustrate the process of the initial REE enrichment in the granites. The results showed that the Yingpanshan–Damanbie pluton consists of syenogranite and monzogranite, containing REE-bearing accessory minerals such as monazite, xenotime, apatite, zircon, allanite, and titanite, with a high REE concentration (210–626 ppm, mean value is 402 ppm). The parent granites have Zr + Nb + Ce + Y (333–747 ppm) contents and a high FeOT/MgO ratio (5.89–11.4), and are enriched in Th (mean value of 43.6 ppm), U (mean value of 4.57 ppm), Zr (mean value of 305 ppm), Hf (mean value of 7.94 ppm), Rb (mean value of 198 ppm), K (mean value of 48,902 ppm), and have depletions of Sr (mean value of 188 ppm), Ba (mean value of 699 ppm), P (mean value of 586 ppm), Ti (mean value of 2757 ppm). The granites plot in the A-type area in FeOT/MgO vs. Zr + Nb + Ce + Y and Zr vs. 10,000 Ga/Al diagrams, suggesting that they are A2-type granites. These granites are believed to have formed through the partial melting of amphibolites at a post-collisional extension setting when the Tethys Ocean closed. REE-bearing minerals (e.g., apatite, titanite, allanite, and fluorite) and rock-forming minerals (e.g., potassium feldspar, plagioclase, biotite, muscovite) supply rare earth elements in weathering regolith for the Yingpanshan–Damanbie iREE deposit. Full article
Show Figures

Figure 1

20 pages, 31392 KiB  
Article
Involvement of the Northeastern Margin of South China Block in Rodinia Supercontinent Evolution: A Case Study of Neoproterozoic Granitic Gneiss in Rizhao Area, Shandong Province
by Xiaolong He, Zeyu Yang, Kai Liu, Wei Zhu, Honglei Zhan, Peng Yang, Tongzheng Wei, Shuxun Wang and Yaoyao Zhang
Minerals 2024, 14(8), 807; https://doi.org/10.3390/min14080807 - 9 Aug 2024
Cited by 1 | Viewed by 1274
Abstract
The South China Plate is an important part of the Rodinia supercontinent in the Neoproterozoic. The Rizhao area, located on the northeastern margin of the South China Plate, records multiple periods of magmatism, among which Neoproterozoic granitic gneiss is of great significance to [...] Read more.
The South China Plate is an important part of the Rodinia supercontinent in the Neoproterozoic. The Rizhao area, located on the northeastern margin of the South China Plate, records multiple periods of magmatism, among which Neoproterozoic granitic gneiss is of great significance to the tectonic evolution of the South China Block. In this study, systematic petrology, geochemistry, isotopic chronology, and zircon Hf isotopic analyses were carried out on gneisses samples of biotite alkali feldspar granitic and biotite monzogranitic compositions in the Rizhao area. Geochemical analyses suggest that these granitic rocks belong to the sub-alkaline series and have high potassium contents. They are enriched in large-ion lithophile elements K, Rb, and Ba; depleted in high field strength elements P, Nb, and Ti; enriched in light rare earth elements and moderately depleted in heavy rare earth elements; and have weak to moderate negative Eu anomalies and weak negative Ce anomalies. These rocks are post-orogenic A-type granites. LA-MC-ICP-MS U-Pb dating of zircons from two biotite alkali-feldspar granitic gneiss samples yielded weighted mean ages of 785 ± 8 Ma (MSWD = 3.0) and 784 ± 6Ma (MSWD = 1.5), respectively, and a biotite monzogranitic gneiss sample yielded a weighted mean age of 789 ± 6 Ma (MSWD = 2.3). Lu-Hf isotopic analyses on zircon grains from the two types of Neoproterozoic-aged gneisses yielded negative εHf(t) values ranging from −19.3 to −8.8 and from −18.3 to −10.4, respectively, and the corresponding two-stage Hf model age ranges are 2848–3776 Ma and 2983–3682 Ma, respectively. These granites are the product of Neoproterozoic magmatic activity and are mainly derived from the partial melting of Archean continental crust. Combining the geochemical characteristics and zircon U-Pb-Lu-Hf isotopic analyses, these A-type granitic gneisses appear to have formed in an intracontinental rift extension environment during the initial break-up of the Rodinia supercontinent, as part of the supercontinent break-up process at the northeastern margin of the South China Block. Full article
Show Figures

Figure 1

20 pages, 23085 KiB  
Article
Origin of the Kunduleng Granite and Its Associated Uranium Anomaly in the Southern Great Xing’an Range, NE China
by Jiaxing Sun, Deyou Sun, Jun Gou, Dongguang Yang, Changdong Wang, Li Tian and Duo Zhang
Minerals 2024, 14(7), 666; https://doi.org/10.3390/min14070666 - 27 Jun 2024
Viewed by 1167
Abstract
The Kunduleng granite hosts one of several significant uranium anomalies within the southern Great Xing’an Range, NE China. Whole-rock geochemistry and mineral chemistry data, along with the zircon U-Pb-Hf isotope have been used to constrain the petrogenesis of this granitic intrusion and the [...] Read more.
The Kunduleng granite hosts one of several significant uranium anomalies within the southern Great Xing’an Range, NE China. Whole-rock geochemistry and mineral chemistry data, along with the zircon U-Pb-Hf isotope have been used to constrain the petrogenesis of this granitic intrusion and the origin of the uranium anomaly. Microscopically, quartz, alkali-feldspar, and plagioclase are the essential mineral constituents of the granite, with minor biotite, while monazite, apatite, xenotime, and zircon are accessory minerals. Geochemically, the silica- and alkali-rich granites show a highly fractionated character with “seagull-shaped” REE patterns and significant negative anomalies of Ba and Sr, along with low Zr/Hf and Nb/Ta ratios. The granite has positive zircon εHf(t) values ranging from +12.7 to +14.5 and crustal model ages (TDM2) of 259–376 Ma, indicating a Paleozoic juvenile crustal source. Uraninite and brannerite are the main radioactive minerals responsible for the uranium anomaly within the Kunduleng granite. Uraninite presents well-developed cubic crystals and occurs as tiny inclusions in quartz and K-feldspar with magmatic characteristics (e.g., elevated ThO2, Y2O3, and REE2O3 contents and low CaO, FeO, and SiO2 concentrations). The calculated U-Th-Pb chemical ages (135.4 Ma) are contemporaneous with the U-Pb zircon age (135.4–135.6 Ma) of the granite, indicating a magmatic genesis for uraninite. The granites are highly differentiated, and extreme magmatic fractionation might be the main mechanism for the initial uranium enrichment. Brannerite is relatively less abundant and typically forms crusts on ilmenite and rutile or it cements them, representing the local redistribution and accumulation of uranium. Full article
(This article belongs to the Special Issue Mineralization in Subduction Zone)
Show Figures

Figure 1

21 pages, 5761 KiB  
Article
Mineralogy and Selenium Speciation Analysis of Early Cambrian Selenium-Rich Black Shale in Southern Shaanxi Province, China
by Caixia Feng, Shen Liu, Wenlei Song, Chenhui Hou and Yanhong Yang
Minerals 2024, 14(6), 612; https://doi.org/10.3390/min14060612 - 15 Jun 2024
Viewed by 1254
Abstract
Selenium (Se) is an essential trace element for humans and animals, and an excess of or deficiency in Se is harmful to health. Research on the selenium enrichment zone began in the late 1970s in Shuang’an, Ziyang, southern Shaanxi Province. Naore village is [...] Read more.
Selenium (Se) is an essential trace element for humans and animals, and an excess of or deficiency in Se is harmful to health. Research on the selenium enrichment zone began in the late 1970s in Shuang’an, Ziyang, southern Shaanxi Province. Naore village is only one selenosis area in Shuang’an, Ziyang, China. Different scholars have conducted systematic studies on the occurrence of selenium, its organic geochemistry and biomarkers, and its content and enrichment patterns in this area. This study applied the TIMA (TESCAN integrated mineral analyzer) for the first time to conduct detailed mineralogical work. The minerals included quartz, carbonate minerals (calcite and dolomite), feldspar (plagioclase, albite, and orthoclase), biotite and muscovite, clay minerals (chlorite and kaolinite), hematite, pyrite, and accessory minerals (almandine, olivine, zircon, and apatite) in Naore village, Ziyang, Shaanxi Province. The ATi index (100 × apatite/(apatite + tourmaline)) is used to determine the source of heavy minerals and the degree of heavy minerals’ weathering. The content POS (100 × (pyroxene + olivine + spinel)/transparent heavy mineral) of olivine, pyroxene, and spinel in heavy minerals can reflect the contribution of basic and ultrabasic rocks in the source area. The ATi and POS indexes for the heavy minerals in the research area were 91.83~99.96 and 0.01~18.75, respectively, reflecting the abundance of volcanic rock material in their source. In addition, the migration, transformation, bioavailability, and toxicity of selenium in the environment are closely related to its species. The species of selenium in various selenium-rich areas (Naore, Wamiao, and Guanquan) mainly include unusable residues and organic forms, followed by humic-acid-bound selenium. The proportions of water-soluble, exchangeable, and carbonate-bound selenium are relatively small, and the proportion of Fe-Mn oxide-bound selenium is the lowest. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

20 pages, 9159 KiB  
Article
Petrogenesis of the Newly Discovered Neoproterozoic Adakitic Rock in Bure Area, Western Ethiopia Shield: Implication for the Pan-African Tectonic Evolution
by Junsheng Jiang, Wenshuai Xiang, Peng Hu, Yulin Li, Fafu Wu, Guoping Zeng, Xinran Guo, Zicheng Zhang and Yang Bai
Minerals 2024, 14(4), 408; https://doi.org/10.3390/min14040408 - 16 Apr 2024
Cited by 1 | Viewed by 1545
Abstract
The Neoproterozoic Bure adakitic rock in the western Ethiopia shield is a newly discovered magmatic rock type. However, the physicochemical conditions during its formation, and its source characteristics are still not clear, restricting a full understanding of its petrogenesis and geodynamic evolution. In [...] Read more.
The Neoproterozoic Bure adakitic rock in the western Ethiopia shield is a newly discovered magmatic rock type. However, the physicochemical conditions during its formation, and its source characteristics are still not clear, restricting a full understanding of its petrogenesis and geodynamic evolution. In this study, in order to shed light on the physicochemical conditions during rock formation and provide further constraints on the petrogenesis of the Bure adakitic rock, we conduct electron microprobe analysis on K-feldspar, plagioclase, and biotite. Additionally, we investigate the trace elements and Hf isotopes of zircon, and the Sr-Nd isotopes of the whole rock. The results show that the K-feldspar is orthoclase (Or = 89.08~96.37), the plagioclase is oligoclase (Ab = 74.63~85.99), and the biotite is magnesio-biotite. Based on the biotite analysis results, we calculate that the pressure during rock formation was 1.75~2.81 kbar (average value of 2.09 kbar), representing a depth of approximately 6.39~10.2 km (average value of 7.60 km). The zircon thermometer yields a crystallization temperature of 659~814 °C. Most of the (Ce/Ce*)D values in the zircons plotted above the Ni-NiO oxygen buffer pair, and the calculated magmatic oxygen fugacity (logfO2) values vary from −18.5 to −4.9, revealing a relatively high magma oxygen fugacity. The uniform contents of FeO, MgO, and K2O in the biotite suggest a crustal magma source for the Bure adakitic rock. The relatively low (87Sr/86Sr)i values of 0.70088 to 0.70275, positive εNd(t) values of 3.26 to 7.28, together with the positive εHf(t) values of 7.64~12.99, suggest that the magma was sourced from a Neoproterozoic juvenile crust, with no discernable involvement of a pre-Neoproterozoic continental crust, which is coeval with early magmatic stages in the Arabian Nubian Shield elsewhere. Additionally, the mean Nd model ages demonstrate an increasing trend from the northern parts (Egypt, Sudan, Afif terrane of Arabia, and Eritrea and northern Ethiopia; 0.87 Ga) to the central parts (Western Ethiopia shield; 1.03 Ga) and southern parts (Southern Ethiopia Shield, 1.13 Ga; Kenya, 1.2 Ga) of the East African Orogen, which indicate an increasing contribution of pre-Pan-African crust towards the southern part of the East African Orogen. Based on the negative correlation between MgO and Al2O3 in the biotite, together with the Lu/Hf-Y and Yb-Y results of the zircon, we infer that the Bure adakitic rock was formed in an arc–arc collision orogenic environment. Combining this inference with the whole rock geochemistry and U-Pb age of the Bure adakitic rock, we further propose that the rock is the product of thickened juvenile crust melting triggered by the Neoproterozoic Pan-African Orogeny. Full article
Show Figures

Figure 1

31 pages, 7614 KiB  
Article
Aptian Li-F Granites of the Northern Verkhoyansk–Kolyma Orogenic Belt, Eastern Russia: Composition, Genesis, and Ore Potential
by Vera A. Trunilina and Andrei V. Prokopiev
Minerals 2024, 14(2), 173; https://doi.org/10.3390/min14020173 - 5 Feb 2024
Viewed by 1423
Abstract
This paper reports the results from an investigation on the geochemistry and petrogenesis of the Aptian Li-F granites from the Omchikandya, Burgali, and Arga Ynnakh Khaya ore fields in the northern Verkhoyansk–Kolyma orogenic belt in eastern Russia. Li-F microcline–albite granites intrude the Late [...] Read more.
This paper reports the results from an investigation on the geochemistry and petrogenesis of the Aptian Li-F granites from the Omchikandya, Burgali, and Arga Ynnakh Khaya ore fields in the northern Verkhoyansk–Kolyma orogenic belt in eastern Russia. Li-F microcline–albite granites intrude the Late Jurassic to Early Cretaceous syn-collisional granitoids. According to their geochemical composition, they are close to A-type granites and can be subdivided into low-P and high-P varieties, differing in their geochemistry and genesis. The low-P microcline–albite granites (Omchikandya massif) intrude syn-collisional biotite granites. It is assumed that the formation of their parent melt occurred at deep levels in the same magma chamber that produced biotite granites. The high-P granites (Verkhne–Burgali ethmolith and Kester harpolith) are supposed to have been derived from melts originated from a high-grade metamorphosed lower crustal protolith under the influence of deep-seated fluid flows related to diapirs of alkaline-ultrabasic or alkaline-basic composition. It is supposed that their formation was related to post-collisional extension during the early stages of the evolution of the Aptian–Late Cretaceous Indigirka belt of crust extension. All studied Li-F granites are enriched with rare metals and have associated Li deposits with accompanying Sn, W, Ta, and Nb mineralization. In the low-P Li-F Omchikandya massif, mineralization tends to occur within greisenized granites and greisens in their apical parts. In the high-P granite massifs, mineralization is found throughout their volume, and, therefore, the Verkhne–Burgali ethmolith and Kester harpolith can be considered as large ore bodies. There is a direct dependence of the content and reserves of Li2O on the content of P2O5. Minimum Li2O reserves are established in low-P Li-F microcline–albite granites of the Polyarnoe deposit of the Omchikandya ore field, whereas in the high-P granites of the Verkhne–Burgali and Kester deposits, the Li2O reserves are significantly higher. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

26 pages, 12140 KiB  
Article
Age and Petrogenesis of the Dongjin Rare Metal Mineralized Intrusion in the Northern Margin of the North China Craton
by Chenyu Liu, Gongzheng Chen, Jinfang Wang, Yi Cheng, Kangshuo Li, Zeqian Lu and Yutong Song
Minerals 2023, 13(12), 1477; https://doi.org/10.3390/min13121477 - 24 Nov 2023
Cited by 1 | Viewed by 1970
Abstract
Highly fractionated granites are widespread in the middle part of the northern margin of the North China Craton (MNNCC), and several are accompanied by rare metal mineralization. The Dongjin rare metal mineralized intrusion, which is representative of this region, is composed of fine-grained [...] Read more.
Highly fractionated granites are widespread in the middle part of the northern margin of the North China Craton (MNNCC), and several are accompanied by rare metal mineralization. The Dongjin rare metal mineralized intrusion, which is representative of this region, is composed of fine-grained alkali-feldspar granite (FAG) and kali-feldspar granite (KG). The FAG and KG evolve continuously, exemplifying the relationship between magmatic evolution and rare metal mineralization. In this contribution, we present integrated columbite U-Pb geochronology, mineralogy, and whole-rock geochemistry analyses of the Dongjin intrusion to determine the timing of the mineralization, petrogenesis, and geodynamic setting, from which the following results are obtained: (1) LA-ICP-MS U-Pb dating for columbite of the FAG and KG yielded the lower intercept ages between 248.9 ± 1.9 Ma and 250.1 ± 1.1 Ma on the Tera–Wasserburg concordia diagram; (2) Geochemically, the Dongjin intrusion is characterized by an enrichment in Si, Al, Rb, Th, U, Nb, and Zr and a strong depletion in Ba, Sr, P, and Ti, with extremely negative Eu anomalies, high LREE and HREE values, and a noticeable tetrad effect of rare earth elements; as a result, it belongs to high-K calc-alkaline rocks; (3) The Dongjin intrusion belongs to a highly differentiated I-type or A-type granite; (4) The fractional crystallization of plagioclase, K-feldspar, and biotite occurred during magmatic evolution; (5) The Dongjin intrusion was formed in a post-collisional extensional environment. In conclusion, the FAG and KG have a homologous evolution, and the FAG has a higher degree of fractional crystallization. The enrichment and mineralization of Nb-Ta are related to the highly fractionated crystallization of granitic magma and fluid–melt interactions in the final stages of magmatic evolution, and there is a rare metal mineralization related to highly fractionated granite in the MNNCC in the Early Triassic, which deserves full attention in future research and prospecting. Full article
(This article belongs to the Special Issue Critical Metals on Land and in the Ocean)
Show Figures

Figure 1

16 pages, 9097 KiB  
Article
Petrogenesis of Late Cretaceous Muscovite-Bearing Peraluminous Granites in the Youjiang Basin, South China Block: Implications for Tin Mineralization
by Ping Li, Xijun Liu and Lei Liu
Minerals 2023, 13(9), 1206; https://doi.org/10.3390/min13091206 - 13 Sep 2023
Viewed by 1918
Abstract
Most primary Sn deposits worldwide are associated with muscovite-bearing peraluminous granites, commonly believed to originate from the partial melting of metasedimentary rocks. We studied the whole-rock geochemistry and Sm–Nd isotopes of Late Cretaceous (~90 Ma) Laojunshan muscovite-bearing peraluminous granites in the Youjiang Basin, [...] Read more.
Most primary Sn deposits worldwide are associated with muscovite-bearing peraluminous granites, commonly believed to originate from the partial melting of metasedimentary rocks. We studied the whole-rock geochemistry and Sm–Nd isotopes of Late Cretaceous (~90 Ma) Laojunshan muscovite-bearing peraluminous granites in the Youjiang Basin, South China Block. The globally significant Dulong tin mineralization was co-genetic with the Laojunshan muscovite-bearing monzogranites. The Laojunshan granites exhibit slightly higher εNd(t) values than the Precambrian basement, indicating a hybrid crustal source comprising both Precambrian rock and juvenile components. Characterized by weakly peraluminous compositions, these granites display highly evolved geochemical features: notably low levels of Ca, P, Mg, Fe, and Ti contents, elevated Si content, a high FeOT/MgO ratio, and a low Zr/Hf ratio. These distinctive geochemical features can be attributed to the differentiation of plagioclase, biotite, and zircons, with the remarkably low Nb/Ta and K/Rb ratios further suggesting a fluid exsolution process. The geochemical data propose that tin-enriched Laojunshan granites originate from mineral differentiation and fluid exsolution of crust-derived melts during magmatic evolution. By integrating these novel findings with existing data on coeval muscovite-bearing granites co-genetic with tin mineralization in the Youjiang Basin, it is deduced that these granites share a unified origin. Their genesis can be attributed to mineral differentiation and fluid exsolution of crust-derived melts rather than a direct melting of metasedimentary rocks. Full article
Show Figures

Figure 1

Back to TopTop