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Abstract: Highly fractionated granites are widespread in the middle part of the northern margin
of the North China Craton (MNNCC), and several are accompanied by rare metal mineralization.
The Dongjin rare metal mineralized intrusion, which is representative of this region, is composed of
fine-grained alkali-feldspar granite (FAG) and kali-feldspar granite (KG). The FAG and KG evolve
continuously, exemplifying the relationship between magmatic evolution and rare metal miner-
alization. In this contribution, we present integrated columbite U-Pb geochronology, mineralogy,
and whole-rock geochemistry analyses of the Dongjin intrusion to determine the timing of the min-
eralization, petrogenesis, and geodynamic setting, from which the following results are obtained:
(1) LA-ICP-MS U-Pb dating for columbite of the FAG and KG yielded the lower intercept ages between
248.9 ± 1.9 Ma and 250.1 ± 1.1 Ma on the Tera–Wasserburg concordia diagram; (2) Geochemically,
the Dongjin intrusion is characterized by an enrichment in Si, Al, Rb, Th, U, Nb, and Zr and a strong
depletion in Ba, Sr, P, and Ti, with extremely negative Eu anomalies, high LREE and HREE values,
and a noticeable tetrad effect of rare earth elements; as a result, it belongs to high-K calc-alkaline rocks;
(3) The Dongjin intrusion belongs to a highly differentiated I-type or A-type granite; (4) The fractional
crystallization of plagioclase, K-feldspar, and biotite occurred during magmatic evolution; (5) The
Dongjin intrusion was formed in a post-collisional extensional environment. In conclusion, the FAG
and KG have a homologous evolution, and the FAG has a higher degree of fractional crystallization.
The enrichment and mineralization of Nb-Ta are related to the highly fractionated crystallization of
granitic magma and fluid–melt interactions in the final stages of magmatic evolution, and there is a
rare metal mineralization related to highly fractionated granite in the MNNCC in the Early Triassic,
which deserves full attention in future research and prospecting.

Keywords: columbite U-Pb dating; rare metal mineralization; highly fractionated I-type granite;
northern margin of the North China Craton

1. Introduction

Growth in the electronics, aerospace, and medical industries has led to increased
demand for rare metals such as niobium (Nb), tantalum (Ta), beryllium (Be), zirconium (Zr),
and lithium (Li), which are also recognized as “critical metals” [1]. Nb and Ta are essential
rare-metal materials in the high-tech electronics industry; therefore, they are widely applied
in aerospace and electrometallurgy [2].
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Worldwide, Nb-Ta deposits are located mainly in Brazil, Australia, Canada, and China.
Nb-Ta mineralization occurs in primary or secondary deposits. Primary deposits are
dominantly related to igneous rocks, where the mineralization is either magmatic or hy-
drothermal in origin and can be divided according to igneous association: (1) Carbonatites:
these rocks contain most of the world’s niobium resources and are often symbiotic with
rare earth elements (REE) (e.g., Bayan Obo in China and Nolans Bore in Australia [3,4]);
(2) Peralkaline granitic and silica-undersaturated rocks: the mineralization characteristics in
these rocks are related to REE-Y-Nb-Zr concentration, and, in some cases, Ta mineralization
also occurs (e.g., the Ghurayyah Ta deposit in Saudi Arabia and the Motzfeld Ta deposit in
Greenland [3]); (3) Metaluminous and peraluminous granitic rocks: these rocks are host to
the world’s major Ta deposits (e.g., the Pitinga Ta-Li deposit in Brazil [3] and the Yichun
Ta-Nb deposit in China [5]). Granite-hosted Nb-Ta deposits are closely associated with Sn,
and pegmatite-hosted Ta deposits are often mined for Li or Cs [5–7]. Most secondary de-
posits involve the re-enrichment of Nb-Ta resources after secondary physical and chemical
processes in primary deposits, and the most representative ones are carbonate weathering
crust-type niobium deposits [3]. In a peraluminous granitic magma system, the host rocks
have usually undergone high degrees of fractional crystallization.

Nb-Ta deposits in China are mainly distributed in South China and Xinjiang [6].
With the deepening of prospecting exploration work, several Nb-Ta deposits have been dis-
covered in the southern Great Xing’an Range and the northern margin of the North China
Craton (NCC) on both sides of the Solonker suture zone in recent years (e.g., the Zhao-
jinggou Ta-Nb deposit [6,7], Jiabusi Nb-Ta deposit [8,9], Saima Nb deposit [10,11], Huashi
Rb-Ta-Nb deposit [12], and Daxiyingzi Rb-Be-Nb deposit [13,14]), showing substantial
ore-forming potential. These rare metal deposits are closely related to highly fractionated
granites and possess strong metallogenic specialization [6–14]. Additionally, the MNNCC
harbors highly fractionated granites with exceptional metallogenic potential [6,7]. How-
ever, significant progress has yet to be achieved in Nb-Ta deposit prospecting for a long
time. At present, several rare metal deposits such as Hua’shi and Han’erzhuang have been
found [12,15,16].

Many studies have been carried out on the geochronology of rare metal deposits in
the northern margin of the NCC. The results show that these deposits were mainly formed
from the Late Triassic to the Early Cretaceous. For example, Zhang and Jiang [17] obtained
a columbite U-Pb age of 130 ± 2.0 Ma for albite granite in the Zhaojinggou Ta-Nb deposit,
Inner Mongolia. Zhang [9] carried out cassiterite U-Pb dating for the Jiabusi Nb-Ta deposit
and obtained an isochron age of 149 ± 2.0 Ma for highly fractionated granite. The typical
magmatic zircon U-Pb age of 229.5 ± 2.2 Ma for the aegirine nepheline syenite of the
Liaoning Saima Nb deposit suggests that the deposit was formed in the Late Triassic [10].
Ju et al. [13] reported that biotite 40Ar-39Ar ages of biotite granite and albitite granite in
the Daxiyingzi deposit were 223.37 ± 2.39 Ma and 223.37 ± 2.45 Ma, respectively. Some
scholars considered that the Nb-Ta enrichment mechanism is generally considered to
be the result of the highly fractional crystallization of granitic magmas [18–21], whereas
others argue that fluid–melt interaction plays a vital role in Nb-Ta mineralization [22,23].
The genesis of these Nb-Ta deposits in the northern margin of the NCC is closely related to
the magma differentiation and fluid–melt interaction. For example, Li et al. [7] reported
that the rare earth elements in the amazonitized and albitized granite of the Zhaojinggou
Ta-Nb deposit exhibit a well-visible tetrad effect, as well as geochemical characteristics
with Nb/Ta ratios less than 5, indicating that these ore-forming granites have experienced
a high degree of crystallization and fluid–melt interaction. Zhang et al. [9] demonstrated
that the rare earth elements in the Li-mica and topazlepidolite granites of the Jiabusi Nb-Ta
deposit exhibit a remarkable M-type lanthanide tetrad effect, with low Nb/Ta (<1.2) and
Zr/Hf (<5.0) ratios. The Dongjin intrusion is located in the MNNCC, with disseminated
Nb-Ta mineralization occurring on the top. Moreover, the FAG and KG in the Dongjin
intrusion are zoned, with the FAG in the upper part and the KG in the lower part, which
offers a superior example with which to study the relationship between crystallization
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and mineralization. To date, there remains a dearth of geochronological research on the
Dongjin intrusion, hampering comprehension of petrogenesis and mineralization. The
zircons within the Dongjin intrusion exhibit high U content with significant metamictization.
We attempted zircon U-Pb dating but failed to obtain reliable ages. As a common accessory
mineral in highly fractionated granites, columbite shows limited effects of late hydrothermal
alteration while possessing high U and a low abundance of Pb [24–26]. This leads to a
highly accurate U-Pb dating of columbite, which has produced convincing results across
numerous studies [24–29]. In addition, the relationship between magmatic evolution
and the mineralization of the Dongjin intrusion remains unclear, and further study is
urgently needed.

Here, we provide systematic columbite U-Pb ages of the FAG and KG. We also carry
out mineralogy and whole-rock geochemistry analyses of the Dongjin rare metal min-
eralized intrusion based on detailed geological investigations. These works allow us to
(1) determine the crystallization and metallogenic ages of the Dongjin intrusion; (2) explore
the petrogenesis and the genetic relationship between the FAG and KG; (3) identify the
relationship between magmatic evolution and Nb-Ta mineralization; (4) provide regional
implications for future rare-metal prospecting in the northern margin of the NCC.

2. Regional Geology

The NCC is the oldest geological unit in China, which has experienced a long ge-
ological evolution with rich mineral resources [30–33]. The NCC is bounded by three
young orogenic belts: in the north, the Paleozoic–Early Mesozoic Central Asian Orogenic
Belt; in the south, the Early Mesozoic Dabie–Sulu Orogenic Belt; and, in the east, the
Mesozoic–Cenozoic Circum-Pacific terrane. The northern margin of the NCC is divided
into eastern, central, and western segments by the Tan–Lu and Daxing’anling–Taihangshan
faults [34,35].

The exposed strata in the northern margin of the NCC include Archean, Paleopro-
terozoic, Mesoproterozoic, Neoproterozoic, Lower Paleozoic, Upper Paleozoic, Mesozoic,
and Paleogene–Neogene. The crystalline basement in the central western segments is com-
posed of a suite of amphibolite–granulite facies comprising the metamorphic rocks of the
Archean and hornblende facies’ metamorphic complex of the Paleoproterozoic. The Middle
Proterozoic strata are dominated by sedimentary construction within the relatively stable
Craton, lacking obvious magmatic activities, and the lithologies contain yellow-brown
conglomerate, dark-gray siltstone, and carbonates. The Neoproterozoic rocks comprise
mainly coastal sedimentary rocks and lagoonal evaporites, which belong to an aulaco-
gen sedimentary assemblage [36]. The Lower Paleozoic strata are composed of shallow
marine sedimentary rocks and shales of the Cambrian and Lower–Middle Ordovician.
The Carboniferous–Permian rocks mainly consist of continental clastic rocks with minor
marine clastic rocks [37]. The Mesozoic rocks are widely distributed in this area, including
the Lower–Middle Jurassic volcaniclastic rocks and the Upper Jurassic–Lower Cretaceous
intermediate-acid volcanic rocks, and the lithologies include brick-red tuff breccia, gray-
green andesite, and light flesh-red rhyolite [38]. The Paleocene–Neoproterozoic rocks are
composed of clastic and iddingsite basalts.

The northern margin of the NCC is at the junction of the North China, Pacific, and
Siberia plates and is characterized by a complex geotectonic evolution. Before the Late
Paleozoic, this region was relatively stable with weak tectonic activities. The Late Paleozoic
structures were influenced by the tectonic evolution of the Central Asian Orogenic Belt,
which resulted in the formation of EW-, NW-, and NE-trending faults (Figure 1b). In the
Mesozoic, this region may have experienced the tectonic evolution of collisional orogenesis
and extensional orogenesis, and the collisional orogenesis is closely related to the closure
of the Paleo-Asian Ocean (PAO) and the collision of continental plates [39], which forms
a large-scale, EW-trending Yinshan–Yanshan fold-thrust belt (Figure 1a). Extensional
orogenesis is related to the subduction of the Paleo-Pacific plate, and, during this period, this
area underwent significant thinning and catastrophic destruction, subsequently developing
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a large number of NNE- and NE-trending extensional tectonics [40]. Regional magmatism
in the NCC can be divided into the Archean, Proterozoic, Permian, and Mesozoic periods.
The Archean intrusive rocks mainly consist of intermediate-acid volcanic rocks and the
lithologies contain mainly granodiorite and diorite [41]. The Meso-Neoproterozoic intrusive
rocks are mainly composed of plagiogranite and granite, accompanied by some mafic dyke
swarms [42]. Since the Phanerozoic, the magmatic activities in this area have been frequent
and characterized by multiple phases and a wide distribution. The Permian intrusive rocks
are mainly composed of quartz diorite, granodiorite, diorite, and granite. The Mesozoic
intrusions are represented by the Triassic alkaline granite and the Jurassic–Cretaceous
anorthosite, diorite, granodiorite, and granite porphyry [43,44].

Figure 1. The geotectonic map ((a) modified after [45]) and geological sketch map ((b) modified
after [46]) of the northern margin of the NCC. F1 = Chifeng–Kaiyuan fault; F2 = Daxing’anling–
Taihangshan fault; 1 = Quaternary sediments; 2 = Paleogene and Neogene sediments; 3 = Neogene
basalt; 4 = Mesozoic volcanic rock and clastic rock; 5 = Late Paleozoic strata; 6 = Early Paleozoic strata;
7 = Meso-Neoproterozoic sediments; 8 = Archean-Paleoproterozoic crystalline basement; 9 = Meso-
zoic granitoids; 10 = Paleozoic granitoids; 11 = Meso-Neoproterozoic granitoids; 12 = Archean-
Paleoproterozoic granitoids; 13 = geological boundary; 14 = observed/inferred fault; 15 = rare
metal deposit.

3. Petrography

The study region is located in Kangbao County, Zhangjiakou City, Hebei Province,
which belongs to the MNNCC (Figure 1a). The exposed rocks in the study area mainly
include a set of intermediate volcanic rocks of the Lower Permian Elitu Formation, a
gray-green, medium-thick layer of tuffaceous sandstones, conglomerates and the dark
gray clay shales of the Lower Permian Yujiabeigou Formation, acid and the intermediate
acid volcaniclastic rocks of the Upper Jurassic Zhangjiakou Formation, and the purple-
gray, unequal-grained conglomerates of the Lower Cretaceous Damoguaihe Formation.
In addition, the Quaternary sediments are widely distributed in the study region with a
relatively thin thickness, and they contain a large number of plant roots and bioclastic
fragments (Figure 2). The study region is influenced by the Indosinian and Yanshanian
tectono-magmatic activities, which form the NW- and NE-trending faults, with the former
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being large in scale. The periods of magmatism in the study region can be divided into In-
dosinian and Yanshanian. The Indosinian intrusions are mainly spread in the EW direction,
and the lithologies mainly include the KG and FAG, which are mainly produced along the
uplift area between the deep faults. The Yanshanian intrusions are mainly spread in the NE
and NW directions, with the lithology mainly including K-feldspar granite porphyry.
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Figure 2. Geological sketch map of the study region: 1 = Quaternary Holocene; 2 = Quaternary
Pleistocene Malan Formation; 3 = Quaternary Pleistocene Chicheng Formation; 4 = Lower Cretaceous
Damoguaihe Formation; 5 = Upper Jurassic Zhangjiakou Formation; 6 = Lower Permian Yujiabeigou
Formation; 7 = Lower Permian Elitu Formation; 8 = Yanshanian kali-feldspar granite porphyry;
9 = Indosinian kali-feldspar granite; 10 = Indosinian fine-grained alkali-feldspar granite; 11 = Granite
aplite vein; 12 = Quartz vein; 13 = Fault; 14 = Sampling point.

The Dongjin intrusion, located in the middle part of the study region, has intruded
into the Lower Permian Yujia’beigou and Elitu Formations as a stock. The FAG and KG
within the Dongjin intrusion exhibit vertical zoning, with a gradual transition from shallow
to deep zones and no discernible intrusion boundary. Additionally, a small amount of
pegmatite is visible at the top of the FAG (Figure 3c). The Rb-Nb-Ta mineralization is
mainly developed at the top of the Dongjin intrusion and occurs in the stratoid shape. The
alterations that occurred in the mineralized bodies were albitization, amazonitization, and
muscovitization, with columbite disseminated in the hosted rocks.
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Figure 3. Hand specimens and photomicrographs of the Dongjin intrusion: (a) hand specimen of
the FAG, mainly consisting of K-feldspar, plagioclase, and quartz, followed by biotite; (b) hand
specimens of the KG, mainly consisting of K-feldspar, plagioclase, and quartz, followed by biotite;
(c) hand specimen of the pegmatite; (d) typical fine-grained granitic texture in the FAG; (e) the stripes
in some of the perthite in the FAG are irregular; (f) the polysynthetic twin is developed in the FAG
with slight sericitization; (g) anhedral quartz is enclosed by perthite in the FAG; (h) typical granitic
texture in the KG, K-feldspar has a small crystal size and the Carlsbad twin can be seen clearly; (i) the
Carlsbad twin of the K-feldspar is developed in the KG and cracks are developed on the quartz
surface. Bt = biotite; Kfs = K-feldspar; Pl = plagioclase; Pth = perthite; Qtz = quartz. (d–i) under
cross-polarized light.

The Dongjin intrusion can be divided into the FAG and KG. The FAG is yellowish-
brown to dark grey in color and has a fine-grained granitic texture and massive structure. It
mainly comprises subhedral to anhedral K-feldspar (55%–65% of the rock mass), subhedral
to anhedral plagioclase (3%–6%), anhedral quartz (20%–35%), and biotite (4%–8%), with
minor accessory minerals (~2%, including apatite and zircon). The grain size ranges from
0.2 to 1.0 mm (averaging 0.5 mm, Figure 3d–g). The KG is flesh-red in color and has a
granitic texture and massive structure. It is mainly composed of subhedral K-feldspar
(40%–50%), euhedral to subhedral plagioclase (4%–8%), anhedral quartz (25%–30%), and
subhedral biotite (3%–5%), with minor accessory minerals (~2%, including apatite and
zircon). The grain size ranges from 1.0 to 3.5 mm (averaging 2.0 mm, Figure 3h,i). The
characteristic Al-rich minerals such as garnet and cordierite were not found in the Dongjin
intrusion. Moreover, slight sericitization and argillization occur in both the FAG and KG.
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4. Sampling and Analytical Methods
4.1. Sampling

In this study, we selected 14 samples, including seven FAG samples (Y1-1–Y1-7) and
seven KG samples (Y2-1–Y2-7), from the Dongjin intrusion for U-Pb dating, major and
trace element analyses, and electron probe microanalysis (EPMA).

Two columbite samples (columbite crystals separated from Y1-4 and Y2-7 samples)
were used for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
U-Pb dating (Figure 2). Fourteen samples were collected for major and trace element analy-
ses. One KG sample (Y2-1) was selected for the EPMA of mica and feldspar, respectively.

4.2. Columbite U-Pb Dating

The separation of columbite was performed at the Tuoxuan Rock and Mineral Test-
ing Service Co., Ltd., Langfang, Hebei Province, China (TRMTS). After separating two
columbite samples using the conventional heavy liquid and magnetic techniques, columbite
grains with better crystalline shape, larger size, and fewer cracks were selected under a
binocular microscope. The columbite target preparation was completed at the Beijing
Yandu Zhongshi Test Technology Co., Ltd., Beijing, China. Firstly, the selected columbite
samples were pasted on the slides with double-sided adhesive tape, and a PVC ring was
placed on top of it. Then, the curing agent and the epoxy resin were mixed thoroughly
and injected into the PVC ring. After that, the sample holders were stripped off from the
slides after the resin was completely cured after a period of time of static time. Finally,
the target was polished. At the same time, polarized light, reflected light, back-scattered
electron imaging (BSE), and LA-ICP-MS columbite U-Pb analysis were also performed.
An Analytik Jena Plasma Quant MC-ICP-MS (Analytik Jena Gmbh, Jena, Germany) with
an NWR 193 nm Ar-F excimer laser was used for the columbite U-Pb analysis. For the
test, blank gas was passed for 15 s followed by 40 s of laser stripping analysis with laser
beam spot diameters of 38 µm and 27 µm, a frequency of 6 Hz, and an energy density of
4.0 J/cm2 [47–51]. The raw data were calibrated offline using ICPMSDataCal (China Uni-
versity of Geosciences, Wuhan, China) and Zskits (ZSkits 1.1.0, Yanduzhongshi Geological
Analysis Laboratory Ltd., Beijing, China), and the common Pb correction was performed
using the 207Pb method [52,53]. The calculations of the U-Pb age and the drawing of con-
cordia diagrams were performed with Isoplot software [54]. The lower intercept represents
the age of columbite in the Tera–Wasserburg diagram.

4.3. Major and Trace Element Analyses

Major and trace element compositions were measured at the Beijing Yandu Zhongshi
Test Technology Co., Ltd., Beijing, China. Major element compositions were analyzed using
a Leeman Prodigy inductively coupled plasma-optical emission spectrometry (ICP-OES)
system (LEEMAN LABS INC, Hudson, NH, USA) with a high-dispersion Echelle optics
system. The powdered samples were first mixed with anhydrous lithium metaborate and
heated to 1000 ◦C for full fusion; then, the fused sample was left to cool down to room
temperature. After cooling, distilled water containing HNO3 was added to the solution and
stirred to dissolve it until a clear and stable solution was formed. Finally, these solutions
were diluted for ICP-OES analysis. The detailed procedure of the analysis and the detailed
parameters of the instrument were mentioned by Thompson and Walsh [55]. The analytical
errors were analyzed using the US Geological Survey rock standards BCR-1 and AVG-2,
as well as the Chinese national rock standards GSR-3, in which the analytical accuracies
of TiO2 and P2O5 were around 1.5% and 2.0%, respectively, and the analytical accuracies
of other oxides were better than 1%. Agilent-7500a inductively coupled plasma mass
spectrometry (ICP-MS) was used for the analysis and determination of rare earth elements
and trace elements. Firstly, 40 mg of powder samples were thoroughly mixed with 1.0 mL
of HF and 0.5 mL of HNO3 in high-pressure PTFE bombs. Secondly, these bombs were
placed in an oven at 195 ◦C for 72 h. Finally, rock digestion diluent was nebulized into the
Agilent-7500a ICP-MS (Agilent Technologies, Santa Clara, CA, USA) for the determination
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of trace elements. The reference materials BCR-1 and BHVO-1 from the US Geological
Survey were utilized to monitor the quality of the data, and the majority of the rare earth
and trace elements were analyzed with a precision of more than 5%.

4.4. Electron Probe Microanalysis

The EPMA of mica and feldspar minerals was carried out at the Institute of Mineral
Resources, Chinese Academy of Sciences (CAGS), using a JEOL JXA-8230 (JEOL, Ltd, Tokyo,
Japan) electron micro-probe instrument, five wavelength dispersive spectrometers (WDSs)
for quantitative analysis, and one energy-dispersive spectrometer (EDS) for qualitative
analysis, where the specific operating conditions were as follows: accelerating voltage of
15 kV, beam current of 10 nA, and beam spot of 5 um. The background counting time
was 30 s and the peak counting time was 60 s for the analysis of F, Cl, and Ti; moreover,
a 15 s background time and a 30 s peak counting time were used for the analysis of the
other elements. The use of natural minerals and synthetic oxides for calibration includes
wollastonite (Si), anorthite (Al and Ca), rutile (Ti), MnO (Mn), hematite (Fe), jadeite (Na),
K-feldspar (K), olivine (Mg), apatite (P), Cr2O3 (Cr), nickelite (Ni), topaz (F), and NaCl (Cl).
All data were calibrated using the ZAF 164 procedure, with the specific requirement that
the limit of detection be 0.01% and that analytical measurements be subjected to relative
uncertainties, which were 1% for major elements and 4% for minor elements.

5. Analytical Results
5.1. Columbite U-Pb Age

A backscattered electron image of columbite shows that the crystal composition of
columbite in the two samples tested (Y1-4 and Y2-7) is relatively homogeneous, structurally
simple (no zoning structure is seen), and mostly conical (Figure 4). Columbite U-Pb results
are listed in Table 1. Most of the analytical points measured for the two samples are located
on the concordant line (Figure 5). A total of 30 spots for sample Y1-4 gave a lower intercept
age of 248.9 ± 1.9 Ma (n = 30, MSWD = 1.9) on the Tera–Wasserburg concordia diagram
(Figure 5a); 30 spots for sample Y2-7 gave a lower intercept age of 248.9 ± 1.9 Ma (n = 30,
MSWD = 0.99; Figure 5b). The two obtained ages are consistent, thereby suggesting that
the Dongjin intrusion and Nb-Ta mineralization were formed in the Early Triassic.
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Table 1. LA-ICP-MS columbite U-Pb data for the FAG and KG (samples Y1-4 and Y2-7) from the Dongjin intrusion.

Spot No. Th
(ppm)

U
(ppm) U/Th

Isotopic Ratios Ages (Ma)
207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ

Y1-4-01 8.40 330 39.5 0.28 0.007 0.04 0.0007 0.05 0.001 0.05 0.001 250.8 5.6 250.8 4.3
Y1-4-02 35.0 687 19.6 0.29 0.007 0.04 0.0008 0.05 0.001 0.05 0.001 258.3 5.3 260.3 4.7
Y1-4-03 4.20 303 71.6 0.28 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 253.7 4.8 251.0 3.2
Y1-4-04 37.1 611 16.5 0.27 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 247.0 3.7 239.5 2.4
Y1-4-05 10.0 284 28.5 0.28 0.007 0.04 0.0004 0.05 0.001 0.05 0.001 254.3 5.2 246.3 2.2
Y1-4-06 2.60 276 107 0.28 0.007 0.04 0.0006 0.05 0.001 0.05 0.001 248.2 5.2 247.8 3.6
Y1-4-07 4.60 238 51.3 0.29 0.007 0.04 0.0008 0.05 0.001 0.05 0.001 256.2 5.9 251.5 4.7
Y1-4-08 38.8 665 17.1 0.30 0.006 0.04 0.0006 0.05 0.001 0.05 0.001 266.0 4.3 255.2 3.6
Y1-4-09 3.70 337 90.6 0.30 0.006 0.04 0.0006 0.06 0.001 0.06 0.001 269.9 4.8 251.7 3.6
Y1-4-11 4.90 230 47.3 0.30 0.009 0.04 0.0006 0.06 0.001 0.06 0.001 267.7 6.7 251.8 4.0
Y1-4-12 47.6 766 16.1 0.28 0.005 0.04 0.0006 0.05 0.001 0.05 0.001 254.1 4.0 251.0 3.7
Y1-4-13 12.9 279 21.6 0.53 0.021 0.04 0.0008 0.09 0.003 0.09 0.003 432.0 14 272.2 4.8
Y1-4-14 24.3 494 20.3 0.29 0.006 0.04 0.0006 0.05 0.001 0.05 0.001 257.0 4.8 253.6 3.7
Y1-4-15 49.8 811 16.3 0.29 0.007 0.04 0.0008 0.05 0.001 0.05 0.001 261.7 5.4 259.0 4.8
Y1-4-16 8.60 277 32.2 0.28 0.007 0.04 0.0006 0.05 0.001 0.05 0.001 252.3 5.7 248.6 3.8
Y1-4-17 6.30 248 39.2 0.28 0.008 0.04 0.0008 0.05 0.001 0.05 0.001 252.9 6.2 247.2 4.7
Y1-4-18 6.20 281 45.2 0.80 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 247.9 3.9 242.7 2.7
Y1-4-19 5.10 234 45.7 0.28 0.007 0.04 0.0006 0.05 0.001 0.05 0.001 252.4 5.4 248.6 4.0
Y1-4-20 6.40 243 38.2 0.65 0.020 0.04 0.0010 0.11 0.002 0.11 0.002 507.1 12 271.0 6.4
Y1-4-21 30.1 516 17.1 0.28 0.007 0.04 0.0009 0.05 0.001 0.05 0.001 248.1 5.7 250.2 5.5
Y1-4-22 5.30 233 43.7 0.28 0.005 0.04 0.0005 0.05 0.001 0.05 0.001 248.6 4.2 247.2 3.0
Y1-4-23 9.20 280 30.5 0.29 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 257.6 4.3 253.1 3.3
Y1-4-24 5.10 280 54.8 0.28 0.007 0.04 0.0008 0.05 0.001 0.05 0.001 248.3 5.9 245.9 4.7
Y1-4-25 7.80 257 33.1 0.28 0.007 0.04 0.0006 0.05 0.001 0.05 0.001 254.9 5.7 251.7 3.6
Y1-4-26 5.20 286 55.4 0.27 0.007 0.04 0.0007 0.05 0.001 0.05 0.001 242.1 5.9 243.1 4.2
Y1-4-27 10.4 372 35.8 0.29 0.006 0.04 0.0006 0.05 0.001 0.05 0.001 262.5 4.8 251.4 3.8
Y1-4-29 3.00 277 92.0 0.29 0.005 0.04 0.0005 0.05 0.001 0.05 0.001 257.8 4.2 248.3 3.0
Y1-4-30 2.40 251 105 0.28 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 251.9 4.4 248.7 3.1
Y2-7-01 16.0 424 26.5 0.28 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 254.1 3.6 251.6 2.6
Y2-7-02 7.40 293 39.4 0.28 0.007 0.04 0.0007 0.05 0.001 0.05 0.001 252.4 5.9 255.1 4.5
Y2-7-03 23.7 578 24.4 0.28 0.005 0.04 0.0005 0.05 0.001 0.05 0.001 252.1 3.7 247.2 2.8
Y2-7-04 20.4 437 21.4 0.28 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 253.5 3.8 252.0 2.5
Y2-7-05 14.7 397 27.0 0.29 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 257.7 3.9 250.6 2.5
Y2-7-06 16.1 386 24.0 0.28 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 251.3 3.9 249.0 2.4
Y2-7-07 17.6 396 22.5 0.29 0.005 0.04 0.0004 0.05 0.001 0.05 0.001 256.3 3.9 253.8 2.5
Y2-7-08 18.2 490 26.9 0.28 0.006 0.04 0.0008 0.05 0.001 0.05 0.001 250.5 4.6 249.3 4.7
Y2-7-09 13.3 369 27.7 0.28 0.004 0.04 0.0004 0.05 0.001 0.05 0.001 248.3 3.5 247.2 2.2
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Table 1. Cont.

Spot No. Th
(ppm)

U
(ppm) U/Th

Isotopic Ratios Ages (Ma)
207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ

Y2-7-11 7.60 306 40.3 0.29 0.006 0.04 0.0004 0.05 0.001 0.05 0.001 257.8 4.8 251.8 2.6
Y2-7-13 15.3 439 28.7 0.30 0.007 0.04 0.0004 0.06 0.001 0.06 0.001 268.9 5.8 248.2 2.5
Y2-7-16 21.2 466 22.0 0.28 0.005 0.04 0.0005 0.05 0.001 0.05 0.001 253.2 3.8 250.0 3.0
Y2-7-17 20.5 477 23.3 0.28 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 250.5 4.6 252.2 3.0
Y2-7-18 10.7 327 30.6 0.31 0.007 0.04 0.0005 0.06 0.001 0.06 0.001 276.8 5.4 249.1 3.1
Y2-7-19 20.3 447 22.0 0.29 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 255.8 4.4 250.3 2.9
Y2-7-20 29.7 369 12.4 0.28 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 252.4 4.8 256.0 3.2
Y2-7-21 37.3 620 16.6 0.28 0.005 0.04 0.0005 0.05 0.001 0.05 0.001 252.7 4.1 249.9 3.0
Y2-7-22 22.9 441 19.3 0.29 0.005 0.04 0.0005 0.05 0.001 0.05 0.001 259.1 4.2 253.5 3.0
Y2-7-23 12.3 372 30.2 0.37 0.007 0.04 0.0005 0.07 0.001 0.07 0.001 321.8 5.4 258.9 3.1
Y2-7-24 6.20 330 53.6 0.29 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 256.8 4.5 255.7 3.0
Y2-7-25 8.10 302 37.5 0.30 0.009 0.04 0.0007 0.05 0.001 0.05 0.001 264.6 6.8 256.8 4.1
Y2-7-26 41.6 602 14.5 0.28 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 253.9 4.3 253.0 2.9
Y2-7-27 40.3 727 18.0 0.31 0.007 0.04 0.0004 0.06 0.001 0.06 0.001 275.1 5.5 250.6 2.2
Y2-7-28 9.70 332 34.2 0.28 0.006 0.04 0.0005 0.05 0.001 0.05 0.001 253.0 4.9 250.0 3.3
Y2-7-29 52.7 854 16.2 0.31 0.005 0.04 0.0005 0.06 0.001 0.06 0.001 273.8 4.0 255.2 3.0
Y2-7-30 5.20 377 72.5 0.30 0.007 0.04 0.0004 0.05 0.001 0.05 0.001 263.7 5.7 253.4 2.2
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Figure 5. U-Pb concordia diagrams (Tera–Wasserburg) of columbite for the FAG (a) and KG (b) from
the Dongjin intrusion.

5.2. Whole-Rock Geochemistry

Fourteen whole-rock geochemical data for the FAG and KG samples from the Dongjin
intrusion are listed in Table 2.

Table 2. Major (wt%) and trace (ppm) element analytical results for the Dongjin intrusion.

Sample Y1-1 Y1-2 Y1-3 Y1-4 Y1-5 Y1-6 Y1-7 Y2-1 Y2-2 Y2-3 Y2-4 Y2-5 Y2-6 Y2-7

SiO2 76.7 76.8 76.9 77.3 77.0 77.5 76.6 77.5 77.8 77.5 77.6 77.6 77.3 77.4
Al2O3 12.6 12.8 12.9 12.4 12.6 12.4 12.6 12.3 12.1 12.0 12.0 12.0 12.1 12.1

CaO 0.16 0.13 0.16 0.23 0.19 0.21 0.24 0.31 0.40 0.33 0.30 0.29 0.33 0.34
K2O 4.31 4.26 4.16 3.52 4.32 3.78 4.42 4.05 4.13 3.69 4.47 4.39 4.27 3.97

TFe2O3 1.20 1.17 1.08 1.23 1.15 1.19 1.24 0.98 0.71 1.40 1.20 1.17 1.21 1.25
FeO 0.90 0.84 0.59 0.79 0.84 0.84 0.84 0.46 0.27 0.65 0.36 0.67 0.42 0.75
MgO 0.05 0.07 0.05 0.04 0.06 0.05 0.07 0.09 0.09 0.09 0.07 0.08 0.09 0.09
MnO 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.05
Na2O 4.17 4.29 4.52 4.70 4.24 4.46 4.22 4.12 3.81 4.22 3.66 3.80 3.77 4.05
P2O5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
TiO2 0.01 0.01 0.01 0.01 0.005 0.01 0.01 0.001 0.004 0.005 0.001 0.005 0.001 0.01
LOI 0.63 0.51 0.50 0.56 0.51 0.50 0.55 0.71 0.91 0.76 0.68 0.81 0.77 0.66
Total 100.0 100.1 100.4 100.0 100.1 100.2 100.0 100.1 100.0 100.0 100.0 100.2 99.9 100.0

DI 96.4 96.5 97.0 96.7 95.0 96.4 96.3 96.4 96.2 95.9 96.2 96.3 95.9 95.8
A/NK 1.10 1.10 1.08 1.07 1.17 1.09 1.07 1.11 1.13 1.09 1.10 1.09 1.12 1.11

A/CNK 1.07 1.08 1.06 1.06 1.17 1.05 1.04 1.05 1.06 1.04 1.05 1.04 1.06 1.05
La 51.8 60.3 47.4 51.0 53.7 67.6 71.3 46.2 52.1 48.5 50.1 47.8 44.8 52.4
Ce 165 181 152 161 172 201 209 147 170 151 156 146 142 162
Pr 14.4 16.0 13.5 15.1 15.2 15.8 17.1 12.8 13.9 13.7 14.6 13.2 13.5 15.2
Nd 41.2 47.0 38.1 43.3 41.7 44.4 54.4 38.7 40.9 41.8 47.1 39.2 41.9 48.1
Sm 9.18 10.1 8.42 10.5 9.05 8.90 12.6 8.77 8.92 10.1 11.2 8.96 10.5 12.1
Eu 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.02 0.03 0.03
Gd 6.76 7.24 6.42 7.93 6.61 6.74 9.45 7.00 6.98 8.07 8.72 7.29 8.17 9.31
Tb 1.24 1.28 1.25 1.67 1.31 1.24 1.96 1.19 1.13 1.63 1.54 1.29 1.50 1.80
Dy 7.60 7.87 8.28 11.2 8.96 8.33 12.9 7.36 6.87 10.8 9.48 8.02 9.32 10.8
Ho 1.36 1.37 1.58 2.26 1.74 1.61 2.52 1.30 1.27 2.20 1.93 1.45 1.81 2.04
Er 5.10 5.18 6.13 8.33 6.60 6.53 10.1 5.03 4.98 7.84 7.26 5.52 6.96 7.27
Tm 0.88 0.92 1.08 1.43 1.21 1.19 1.73 0.87 0.88 1.26 1.15 0.97 1.15 1.19
Yb 6.41 6.74 7.64 11.4 8.84 9.15 13.5 6.44 6.42 9.89 8.76 6.76 8.12 8.47
Lu 0.95 0.98 1.16 1.52 1.34 1.38 1.91 1.01 1.02 1.33 1.32 1.05 1.24 1.29
Y 33.7 30.1 39.4 57.2 37.8 37.2 71.9 36.8 38.4 65.3 57.7 41.7 54.2 58.7

ΣREE 312 346 293 326 329 373 418 284 316 308 319 287 291 332
LREE 282 314 260 281 292 337 364 254 286 265 279 255 253 289
HREE 30.3 31.6 33.5 45.8 36.6 36.2 54.1 30.2 29.5 43.0 40.2 32.4 38.3 42.1

LREE/HREE 9.30 9.94 7.74 6.13 7.98 9.32 6.73 8.40 9.68 6.16 6.95 7.88 6.60 6.87
LaN/YbN 5.79 6.42 4.45 3.21 4.35 5.30 3.79 5.15 5.82 3.52 4.10 5.07 3.96 4.44

Eu/Eu* 0.004 0.01 0.004 0.005 0.004 0.005 0.003 0.01 0.01 0.01 0.01 0.01 0.01 0.01
δCe 1.48 1.43 1.48 1.42 1.48 1.51 1.46 1.49 1.55 1.44 1.42 1.42 1.41 1.40
Rb 995 1019 950 853 912 865 978 711 638 681 761 740 722 760
Ba 3.92 7.46 2.69 3.80 4.90 6.42 5.27 17.1 28.8 8.41 43.9 15.1 40.9 12.6
Th 50.0 48.5 43.7 49.6 50.6 55.3 59.3 53.6 65.5 55.3 52.2 49.9 50.8 60.8
U 2.32 2.93 1.82 2.40 2.18 2.63 3.13 2.41 5.10 4.37 5.00 2.35 4.95 2.96

Nb 144 177 131 151 131 165 138 95.0 100 128 121 142 82.0 139
Ta 8.79 12.2 8.92 8.79 8.19 8.92 7.78 8.79 8.52 10.1 9.11 11.2 8.04 9.69
Sr 6.38 6.07 2.63 8.02 6.15 8.18 5.18 8.11 8.41 6.09 8.73 6.85 7.84 6.38
Zr 121 129 99.0 120 117 191 251 114 160 138 134 129 125 144
Hf 9.60 10.4 8.18 9.87 10.5 12.5 15.1 8.17 10.2 9.36 8.67 8.40 7.98 10.3

Seven samples of the FAG from the Dongjin intrusion are characterized by high SiO2
(76.60%–77.50%) and total alkali contents (Na2O + K2O = 8.22%–8.68%), medium to low
Al2O3 contents (12.41%–12.94%), poor CaO (0.13%–0.24%), Fe2O3

T (1.08%–1.24%), FeO
(0.594%–0.901%), MgO (0.04%–0.07%), MnO (0.048%–0.051%), and TiO2 (0.005%–0.01%).
In the QAP classification (Figure 6a), most samples plot in the alkali feldspar granite field.
In the R1 versus R2 diagram, all the samples fall into the alkaline granite field (Figure 6b).
In the SiO2 versus K2O diagram, all the samples are classified as high-K calc-alkaline
(Figure 6c). The samples with FeO/(FeO + MgO) values ranging from 0.92 to 0.95 belong
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to the ferroan granitoid. At the same time, the FAG has a high differentiation index
(DI = 95.0–97.0). In the Al2O3/(CaO + Na2O + K2O) (A/CNK) versus Al2O3/(Na2O + K2O)
(A/NK) diagram, all samples are peraluminous (Figure 6d). In the chondrite-normalized
diagram (Figure 7a), the REE patterns lean to the right, appear as a seagull, and have total
REE contents of 293–418 ppm and relatively strong fractionation between light rare earth
elements (LREEs) and heavy rare earth elements (HREEs) (6.13–9.94, averaging 8.16), with
LaN/YbN values varying from 3.21 to 6.42 (averaging 4.76). They are characterized by
extremely negative Eu anomalies (Eu/Eu* = 0.003–0.008, averaging 0.005) with a noticeable
tetrad effect. A primitive mantle-normalized, multi-element diagram indicates that these
rocks are enriched in Th, U, Nb, Zr, Y, and Rb and depleted in Ba, Sr, P, and Ti (Figure 7b).
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Figure 6. Diagrams of petrographic classification for the Dongjin intrusion: (a) general classification
and nomenclature of plutonic rocks according to mineral content (in vol.%) [56]; Q = quartz, A = alkali
feldspar, P = plagioclase; (b) R1 versus R2 diagram [57]; (c) SiO2 versus K2O diagram [58]; (d) A/CNK
versus A/NK diagram [59].

The KG has high SiO2 (77.32%–77.75%, averaging 77.52%) and total alkali content
(Na2O + K2O = 7.94%–8.19%). The Al2O3 content (11.96%–12.34%) is lower than that of the
FAG. The A/NCK ratios are between 1.04 and 1.06. In the QAP classification (Figure 6a),
most samples are plotted in the syenogranite field. Like the FAG, it has the characteristics
of being high in silicon and rich in alkali, belonging to the high-K calc-alkaline series. It has
poor CaO (0.29%–0.40%), Fe2O3

T (0.71%–1.40%), FeO (0.268%–0.747%), MgO (0.07%–0.09%),
MnO (0.035%–0.048%), and TiO2 (0.001%–0.01%), and the vast majority of the samples with
FeO/(FeO + MgO) values varying from 0.74 to 0.90 belong to the ferroan granitoid. The KG
has total REE contents of 284–331 ppm, and they are characterized by extremely negative Eu
anomalies (Eu/Eu* = 0.009–0.012, averaging 0.01) with a noticeable tetrad effect; however,
it is not as obvious as that of the FAG (Figure 7a). In the primitive mantle-normalized,
multi-element diagram (Figure 7b), all samples show obvious enrichments in Th, U, Nb, Zr,
Y, and Rb and weak depletions in Ba, Sr, P, and Ti.
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primitive mantle-normalized trace element spider diagrams ((b), normalization values after Sun and
McDonough [61]) of the Dongjin intrusion.

5.3. EPMA of Mica and Feldspar

The analyzed micas and feldspars with the exact sites of the spot analyses are shown
in Figure 8. The EPMA data of the mica of the KG samples are shown in Table 3, and the
EPMA data of the mica samples are listed in Table 4. The mica samples are characterized
by a high content of elements such as Al, Li, K, and F and low content of elements such as
Ti, Mn, Mg, Cl, and Fe, and the plagioclase samples have very low An (0.17–1.97) and Or
(0.41–3.27) values and extremely high Ab values, varying from 94.8 to 99.2.
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Figure 8. Representative photomicrographs of the Dongjin intrusion, showing EMPA analysis spots
of anhedral K-feldspar and mica (a), alongside subhedral K-feldspar and mica (b).

Table 3. The electron probe microanalysis (EPMA) data for mica samples (wt%).

Sample Y2-1 Y2-2 Y2-3 Y2-4 Y2-5

SiO2 39.9 42.5 40.3 40.4 41.3
TiO2 0.71 0.57 0.84 0.53 0.54

Al2O3 18.7 20.0 19.6 19.5 20.0
FeO 25.0 22.2 23.8 23.2 23.3
MnO 0.03 0.10 0.10 0.04 0.10
MgO 0.07 0.08 0.07 0.07 0.09
CaO 0.01 0.01 0.01 0.06 0.01

Na2O 0.16 0.07 0.05 0.10 0.14
K2O 9.32 8.70 9.17 9.49 8.99

F 2.81 4.40 1.96 3.87 4.52
Cl 0.07 0.01 0.07 0.03 0.07
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Table 3. Cont.

Sample Y2-1 Y2-2 Y2-3 Y2-4 Y2-5

Number of cations calculated on the basis of 12 oxygen atoms

Si 3.01 3.07 3.04 3.01 3.00
AlIV 0.99 0.93 0.96 0.99 1.00
AlVI 0.68 0.76 0.79 0.71 0.71

Ti 0.04 0.03 0.05 0.03 0.03
Fe3+ 0.77 1.04 0.75 0.89 0.98
Fe2+ 0.82 0.30 0.75 0.55 0.43
Mn 0.002 0.01 0.01 0.003 0.01
Mg 0.01 0.01 0.01 0.01 0.01
Ca 0.001 0.001 0.0004 0.05 0.001
Na 0.02 0.01 0.01 0.01 0.02
K 0.90 0.80 0.88 0.90 0.83

Total 7.23 6.96 7.25 7.11 7.02
Fet 1.59 1.34 1.50 1.44 1.41

OH− 2.00 2.00 2.00 2.00 2.00
MF 0.005 0.01 0.005 0.005 0.01

AlVI + Fe3+ + Ti 1.49 1.84 1.59 1.63 1.72
Fe2+ + Mn 0.82 0.30 0.76 0.55 0.44

Ti/(Mg + Fe + Ti + Mn) 0.02 0.02 0.03 0.02 0.02
Al/(Al + Mg + Fe + Ti + Mn + Si) 0.26 0.28 0.27 0.28 0.28

Li2O 6.27 6.16 6.38 6.28 5.95
Li 1.92 1.89 1.96 1.93 1.83

Mg − Li −1.91 −1.88 −1.95 −1.92 −1.82
Fet + Mn + Ti − AlIV 0.94 0.61 0.77 0.76 0.74

Table 4. The electron probe microanalysis (EPMA) data for feldspar samples (wt%).

Sample Y2-6 Y2-7 Y2-8 Y2-9 Y2-10

SiO2 74.7 74.6 74.9 74.3 74.6
Al2O3 19.1 18.9 18.9 18.9 18.0
CaO 0.07 0.05 0.04 0.03 0.24

Na2O 6.53 6.99 6.48 7.89 6.24
K2O 0.14 0.04 0.08 0.08 0.33
BaO 0.00 0.03 0.02 0.00 0.03

Number of cations calculated on the basis of 8 oxygen atoms

Si 3.15 3.15 3.16 3.13 3.18
Al 0.95 0.94 0.94 0.94 0.90
Ca 0.003 0.002 0.002 0.0001 0.01
Na 0.53 0.57 0.53 0.65 0.52
K 0.01 0.002 0.004 0.005 0.02
Ba 0.00 0.001 0.001 0.00 0.001
An 0.56 0.36 0.36 0.17 1.97
Ab 98.1 99.2 98.8 99.1 94.8
Or 1.33 0.41 0.80 0.69 3.27

6. Discussion
6.1. Rock- and Ore-Forming Ages

Among previous studies, the crystallization ages of several highly fractionated granites
along the northern margin of the NCC were concentrated in the Yanshanian period, and
several were formed in the Indosinian and Variscan periods. For example, a zircon U-Pb
age of 144.3 ± 0.7 Ma for the highly fractionated granites from the Jiabusi Nb-Ta deposit
was reported by Zhang et al. [9]. The zircon U-Pb age of the ore-forming granites of the
Han’erzhuang Nb-Ta deposit was 151 ± 2.0 Ma [16]. Qi et al. [12] determined that the
U-Pb ages of two zircon grains from the Madi intrusion of the Hua’shi Rb deposit were
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156 ± 2 Ma and 165 ± 2 Ma, respectively. Chen et al. [62] measured the zircon U-Pb
ages of 243.7 ± 1.6 to 242.2 ± 2 Ma for the alkali feldspar granite from the Sadaigoumen
porphyry Mo deposit. In recent years, several rare metal deposits have been discovered
successively in the northern margin of the NCC. Previous studies on the crystallization and
metallogenic ages of these deposits have been conducted. Li et al. [7] reported magmatic
and hydrothermal zircon LA-ICP-MS U-Pb dating in the Zhaojinggou Ta-Nb polymetallic
deposit, and the results demonstrate that the weighted average age of magmatic zircon
and hydrothermal zircon from amazonitized granite was 116 ± 2 Ma and 112.8 ± 2.2 Ma,
respectively. The cassiterite U-Pb age for highly fractionated granite in the Jiabusi Nb-Ta
deposit was 149 ± 2.0 Ma, indicating that the deposit was formed in the Late Jurassic [9].
Zhong et al. [11] carried out biotite 40Ar-39Ar dating for the Saima Niobium deposit and
obtained an isochron age of 222 Ma for one aegirine–nepheline syenite sample related to
mineralization. Sixteen zircon grains of typical magmatic origin from Saima syenite yielded
a U-Pb age of 229.5 ± 2.2 Ma, indicating that the ore-forming aegirine nepheline syenite
was formed in the Late Triassic [10]. To sum up, the mineralization was concentrated from
the Late Triassic to the Early Cretaceous.

The zircons within the Dongjin intrusion exhibit high U content with significant
metamictization. Therefore, despite our efforts in attempting zircon U-Pb dating, we
unfortunately failed to obtain reliable ages. Columbite, with high U and low common Pb
contents, is hardly affected by late hydrothermal alteration. Therefore, the U-Pb dating of
columbite is particularly precise, and convincing ages have been obtained in a multitude
of studies [24–29]. In this study, columbite U-Pb dating for the FAG and KG yielded
ages of 248.9 ± 1.9 Ma and 250.1 ± 1.1 Ma, respectively, which indicates that the Nb-
Ta mineralization occurred in the Early Triassic. In conclusion, the Early Triassic Nb-Ta
mineralization related to highly fractionated granites in the MNNCC deserves attention.

6.2. Petrogenetic Type

As mentioned above, the FAG and KG are rich in silicon and alkali and poor in Ca,
Fe, Mg, Ti, and P. They are classified as a high-K calc-alkaline series, showing extremely
negative Eu anomalies with a noticeable tetrad effect. The FAG has more pronounced
negative Eu anomalies and stronger depletions of Ba, Sr, P, and Ti than the KG. These
geochemical characteristics show that the Dongjin intrusion is an A-type granite affinity [63].
In the 10,000 Ga/Al versus (K2O + Na2O)/CaO diagram [64], all the samples of the Dongjin
intrusion fall into the A-type granite field (Figure 9a). The relatively low abundance of
mafic minerals (including the lack of amphibole) is also typical of A-type granites [65].
Additionally, the fundamental feature of A-type granite is the enrichment of Fe compared
to Mg [66,67]. Both the FAG and KG belong to alkali-calcic ferroan granite.

Highly fractionated granites have similar geochemical characteristics to A-type gran-
ites (e.g., high SiO2 and relatively high alkali contents, low CaO and MgO contents, pera-
luminous and ferroan characters, a “seagull-type” REE pattern with a deep, negative Eu
anomaly, enrichment in U, Th, Zr, Rb, Nb, and Y, and depletion in Ba, Sr, P and Ti), which
complicates their differentiation [63,67]. Significant effort has been applied in identify-
ing A-type granites and highly fractionated granites [65–68]. Typical A-type granites are
formed in high-temperature environments (averaging 839 ◦C) with high Zr contents [68].
The Zr content of the Dongjin intrusion (average 140.93 × 10−6) is significantly lower than
that of A-type granite (>250 × 10−6) [69]. The Zr saturation temperature of the Dongjin
intrusion averages 780 ◦C, which is similar to the average temperature of I-type granite
(781 ◦C) [68]. A-type granite tends to evolve from A-type granite toward highly fraction-
ated granite in the 10,000 Ga/Al versus Zr discriminant diagram (Figure 9b) [69], whereas
I-type and S-type granite show the opposite trend of evolution to A-type granite, with an
increase in the 10,000 Ga/Al ratio. The Dongjin intrusion shows the same trend as the I/S
differentiated granites in the process of differentiation. In the SiO2 versus P2O5 correlation
diagram (Figure 10a), the content of P2O5 decreases with increased SiO2 content, showing
a negative correlation. In the Rb versus Y diagram (Figure 10b) and Rh versus Th diagram
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(Figure 10c), the contents of Y and Th increase with an increase in Rb content, which shows
a positive correlation and indicates that the Dongjin intrusion adheres to a trend of evolving
I-type granite. Petrographic studies show that no aluminum-rich minerals (e.g., garnet and
cordierite) are found in the Dongjin intrusion combined with the low P2O5 content, which
excludes the possibility of S-type granite. Above all, the Dongjin intrusion is more likely to
be highly differentiated I-type granite. However, A-type granite cannot be entirely excluded
as no typical I-type granite minerals like amphibole and sphene have been detected in the
Dongjin intrusion. Many granitic intrusions have both I-type and A-type granite affinities,
such as Dabaishitou pluton [70] and Fogang batholith [71]. In conclusion, we propose that
the Dongjin intrusion is a highly differentiated I-type or A-type granite.
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6.3. Magmatic Evolution and Mineralization

Magmatic evolution is an essential factor controlling the enrichment and mineral-
ization of Nb and Ta in rare metal granites [45,72]. Most Nb-Ta-mineralized granites
show peraluminous characteristics, and, in the process of magma evolution, the con-
tents of Nb and Ta are gradually enriched in magma. In the Zr/Hf versus FeOT/MgO
and Zr/Hf versus 10,000 Ga/Al discriminant diagrams, from the KG to the FAG, the
FeOT/MgO and 10,000 Ga/Al ratios increase with a decrease in Zr/Hf ratio for most
samples (Figure 11a,b). In the Nb versus 10,000 Ga/Al and Ga versus 10,000 Ga/Al dis-
criminant diagrams, as the Nb and Ga contents increase, the FeOT/MgO and 10,000 Ga/Al
ratios increase (Figure 11c,d), indicating that the initial magma of the Dongjin intrusion
has low FeOT/MgO and Ga/Al ratios and the ratios increase with magmatic evolution.
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The Dongjin intrusion is obviously rich in silicon and alkali and deficient in Ba, Sr, P,
and Ti, showing extremely negative Eu anomalies with a noticeable tetrad effect. These
geochemical characteristics all indicate that the magma had experienced high fractional
crystallization. With progressive magma differentiation, the obvious loss in Sr content in
the residual melts implies the fractional crystallization of plagioclase [72,73]. Low Ba/Sr
ratio and Ba depletion suggest that the fractional crystallization of K-feldspar occurred [72].
The fractional crystallization of biotite may be responsible for the enrichment of Nb and Ta
contents and the decrease in the Ba/Sr ratio [72,73]. In the Sr versus Rb/Sr and Sr versus
Ba diagrams (Figure 12a,b), the contents of Sr and Ba are significantly reduced and the ratio
of Rb/Sr is increased from the KG to the FAG, indicating that the fractional crystallization
of plagioclase, K-feldspar, and biotite occurred during magmatic evolution.
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The Zr/Hf and Nb/Ta ratios have long been recognized as geochemical “identical
twins” that are hardly changed in normal magmatic systems [46,76], but these ratios
can change significantly during magmatic differentiation [77,78]. Ballouard et al. [78]
suggested that a Nb/Ta ratio of 5 can be divided by the granites into normal crystallization
differentiation genesis and magma–hydrothermal interaction genesis, and most granite
samples were indicative of undergoing the hydrothermal process when Nb/Ta < 5. Bau [79]
proposed Zr/Hf = 26 as the magma–hydrothermal boundary of the granitic system. From
the KG to the FAG, the negative Eu anomaly is more pronounced (Figure 7a) and the Zr/Hf
ratio decreases (Figure 13a), indicating that the FAG is more evolved than the KG. In the
final stages of magmatic evolution, fluid–melt interaction alters the geochemical behavior
of rare earth elements in the magma, resulting in a noticeable tetrad effect [31,79–81].
Irber [80] concluded that rocks with the degree of the tetrad effect (TE1,3) values exceeding
1.1 have an obvious tetrad effect. TE1,3 values of the KG range from 1.18 to 1.24, and TE1,3
values of FAG range from 1.23 to 1.29 (Figure 13b,c), indicating that the Dongjin intrusion
formed was closely associated with the melt–fluid interaction during the late stage of the
high differentiation processes of granitic magma, leading to an obvious tetrad effect. From
the KG to the FAG, the tetrad effect is obviously enhanced (Figure 13c,d), and the Y/Ho
ratio decreases (Figure 13d).
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There is a correlation between the magmatic evolution and the mica type: with an
increase in magma evolution, the mica will gradually evolve toward zinnwaldite or even
lepidolite [72,82–84]. In the mica classification diagram proposed by Tischendorf et al. [72],
all the KG samples fall into the protolithionite region (Figure 14a), suggesting that the
residual melts are rich in F and Li. In the feldspar classification diagram proposed by
Deer et al. [85], the plagioclase in the KG falls into the field of Na-rich albite (Figure 14b).
The ore-forming rock mass of granitic Nb-Ta deposits tends to show the characteristics
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of peraluminous, and the contents of Nb and Ta increase with magma evolution [86–88];
therefore, the enrichment and mineralization of Nb and Ta elements are closely related to
the highly fractionated crystallization of granitic magma. In the early stages of magma
evolution, the Dongjin intrusion experiences the fractional crystallization of plagioclase, K-
feldspar, and biotite so that the ore-forming materials such as Nb and Ta can preliminarily be
enriched. In the late stages of magma evolution, the residual melts contain a large amount
of highly volatile components, which is a promoter of the high differentiation evolution of
magma. The enrichment of volatile components such as F and Cl can significantly increase
the NBO in the melt, thereby improving the solubility of Nb and Ta in silicate melt [46,87].
At the end of magma evolution, ore-forming fluid exsolution occurs in the magma, and the
fluid–melt partition coefficients of Nb and Ta are very low [89,90]; therefore, they tend to
enrich in the residual melt [91,92]. However, during this period, the fluid–melt interaction
is of great significance for the precipitation of Nb and Ta minerals. High-temperature and
high-pressure experiments have shown that, at 450 ◦C, a pegmatitic magmatic system with
fluid rich in a fluid-mobile element (FME, e.g., Mn) can crystallize columbite with only
17 ppm Nb and 1 wt% Mn. At the same time, the recent experimental study replicated
columbite group mineral textures [92], that is, to a large extent, the interaction of a melt
that is enriched in high field strength elements (HFSE) with a Mn-rich fluid can promote
the formation of Nb mineralization. Therefore, we believe that fluid–melt interaction is of
great significance for the formation of rare metal mineralization in the Dongjin intrusion.
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In summary, the crystallization differentiation of a vast number of rock-forming
minerals gradually enriched Nb and Ta in the Dongjin intrusion in the early stages of the
magma evolution. The fluid–melt interaction in the final stages of magma evolution led to
the large-scale crystallization of Nb and Ta in the residual melts, ultimately forming rare
metal mineralization.

6.4. Tectonic Setting

At least three stages of tectonic and magmatic activities occurred in the northern
margin of the NCC during the Early Carboniferous–Late Triassic, including the Early
Carboniferous–Early Permian (358–272 Ma), the Middle Permian (272–259 Ma), and the Late
Permian–Late Triassic (259–201 Ma), with striking differences in their tectonic backgrounds.

During the Early Carboniferous–Early Permian period, there were a large number of
EW-oriented, high-K calc-alkaline volcanic rocks distributed along the northern margin of
the NCC, mainly consisting of hornblende gabbro, diorite, granodiorite, and granite. The
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geochemical and source characteristics of these rocks indicate that they were formed in an
active continental margin environment [36,93–99]. In the Middle Permian (272–259 Ma), the
northern margin of the NCC was in a syn-collision tectonic environment, and the evidence
is as follows. The zircon U-Pb age of the Suzy volcanic rocks with characteristics of S-type
granite located in the Bayan Obo area is 272–267 Ma, which formed during the transition
period from subduction to a syn-collision tectonic environment [100]. Additionally, the
closure of the western side of the PAO occurred during this period. Recent paleontological
studies indicate that the northern margin of the NCC developed Cathaysia flora along the
southern side of the Xar Moron fault belt, while Angara flora developed on the northern
side during the Early Permian. The mixture of Cathaysia and Angara flora did not occur
until the Middle to Late Permian [101–105]. Paleomagnetic studies have also shown that
the Xilinhot–Songliao Block and North China Block reveal a latitudinal convergence and
relative rotation between them that led to a scissor-like closure of the PAO from west to
east between 265 and 246 Ma [106].

As mentioned above, the Dongjin intrusion and Nb-Ta mineralization were formed in
the Early Triassic. During this period, the intrusive rocks in the northern NCC consisted
primarily of monzogranite, syenogranite, and monzonite, with minor mafic–ultramafic
rocks and granodiorite. The majority of the Early Triassic magmatic rocks are characterized
by high contents of SiO2, low initial 87Sr/86Sr ratios, and low and negative εNd(t) and
εHf(t) values. The granites are categorized as highly fractionated I-type or A-type [107].
Similarly, the Dongjin intrusion belongs to high-K calc-alkaline rocks, characterized by high
silicon and high alkalis. In the Yb versus Ta discrimination diagram [108], all samples lie in
the within-plate granite field (Figure 15a). In the (Yb + Ta) versus Rb diagram [108], most
samples fall into the transition domains of the syn-collisional granite and the within-plate
granite (Figure 15b). In the R1 versus R2 discrimination diagram [109], the FAG samples
fall into the transition zone between the late-orogenic granite and the post-orogenic granite,
and all of the KG samples fall into the post-orogenic granite field (Figure 15c). In the
SiO2 versus log[CaO/(Na2O + K2O)] diagram recommended by Brown et al. [110], the
FAG samples plot in the area of granite formed near the extensional environment and all
the KG samples lie within the extensional granite area (Figure 15d), indicating that the
Dongjin intrusion was formed in the transitional field from the syn-collisional granite to
the within-plate granite, i.e., the post-collision extensional setting. From the Middle to Late
Triassic, alkaline intrusive complexes including nepheline syenite, aegirine–augite syenite,
pyroxene syenite, quartz syenite, syenite, alkaline granite, and associate mafic–ultramafic
rocks are also quite common in the northern NCC, suggesting an extensional tectonic
setting [107]. Furthermore, Late Triassic extension has been reported in the NW Ordos
Basin and controlled Triassic sedimentation in the Helan Shan and Zuozi Shan [111,112].
A Late Triassic metamorphic core complex was reported in the south of Sonid Zuoqi in
the vicinity of the Solonker suture zone north of the northern margin of the NCC [113]. A
Late Triassic NE–SW extension indicated by the L-tectonites exists near the Chifeng area
in northeastern NCC, and geo-chronological results on syntectonic diorite plutons and
mylonitic rocks indicate deformation at ca. 228–219 Ma [114].

In summary, we believe that the PAO in the northern margin of the NCC was closed
during 250–248 Ma. In the Late Permian–Late Triassic, the deformation patterns in the
northern NCC changed from a N–S to NE–SW contraction to an extension, and the up-
welling of the asthenosphere and the thinning of the crust induced a lot of magmatic
activities, including the Dongjin intrusion [36,115–117]. To put it simply, the Dongjin
intrusion was formed in a post-collision extensional environment.



Minerals 2023, 13, 1477 21 of 26Minerals 2023, 13, x FOR PEER REVIEW 21 of 26 

Figure 15. Tectonic discrimination diagrams for the Dongjin intrusion: (a) Yb versus Ta diagram 
[108]; (b) (Yb + Ta) versus Rb diagram [108]; (c) R1 versus R2 diagram [109]; (d) SiO2 versus 
log[CaO/(Na2O + K2O)] diagram [110]. 

In summary, we believe that the PAO in the northern margin of the NCC was closed 
during 250–248 Ma. In the Late Permian–Late Triassic, the deformation patterns in the 
northern NCC changed from a N–S to NE–SW contraction to an extension, and the 
upwelling of the asthenosphere and the thinning of the crust induced a lot of magmatic 
activities, including the Dongjin intrusion [36,115–117]. To put it simply, the Dongjin in-
trusion was formed in a post-collision extensional environment. 

7. Conclusions
1. Columbite U-Pb dating for the FAG and KG yielded ages of 248.9 ± 1.9 Ma and 250.1

± 1.1 Ma, respectively, indicating that the Nb-Ta mineralization occurred in the Early
Triassic. There is rare metal mineralization related to highly fractionated granites in
the MNNCC in the Early Triassic;

2. The Dongjin intrusion belongs to a highly differentiated I-type or A-type granite, and
the fractional crystallization of plagioclase, K-feldspar, and biotite occurred during
magmatic evolution. The Dongjin intrusion also experienced fluid–melt interaction,
which showed a noticeable tetrad effect of rare earth elements;

3. In the early stages of magmatic evolution, the high degree fractional crystallization
of the granitic magma leads to an enrichment in Nb and Ta. In the final stages of
magmatic evolution, melt–fluid interaction plays a key role in the further enrichment
and mineralization of Nb-Ta;

4. The Dongjin intrusion was formed in a post-collisional extensional environment.

Author Contributions: Conceptualization, C.L. and G.C.; methodology, C.L.; software, C.L., K.L., 
Z.L. and Y.S.; validation, G.C. and J.W.; formal analysis, C.L., Y.C., K.L. and Z.L.; writing—original
draft preparation, C.L.; writing—review and editing: G.C. and J.W.; investigation, C.L., G.C., J.W.,

Figure 15. Tectonic discrimination diagrams for the Dongjin intrusion: (a) Yb versus Ta dia-
gram [108]; (b) (Yb + Ta) versus Rb diagram [108]; (c) R1 versus R2 diagram [109]; (d) SiO2 versus
log[CaO/(Na2O + K2O)] diagram [110].

7. Conclusions

1. Columbite U-Pb dating for the FAG and KG yielded ages of 248.9 ± 1.9 Ma and
250.1 ± 1.1 Ma, respectively, indicating that the Nb-Ta mineralization occurred in
the Early Triassic. There is rare metal mineralization related to highly fractionated
granites in the MNNCC in the Early Triassic;

2. The Dongjin intrusion belongs to a highly differentiated I-type or A-type granite, and
the fractional crystallization of plagioclase, K-feldspar, and biotite occurred during
magmatic evolution. The Dongjin intrusion also experienced fluid–melt interaction,
which showed a noticeable tetrad effect of rare earth elements;

3. In the early stages of magmatic evolution, the high degree fractional crystallization
of the granitic magma leads to an enrichment in Nb and Ta. In the final stages of
magmatic evolution, melt–fluid interaction plays a key role in the further enrichment
and mineralization of Nb-Ta;

4. The Dongjin intrusion was formed in a post-collisional extensional environment.
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