Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = biosensor of cholinesterase inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 993 KiB  
Review
Fluorometric and Colorimetric Biosensors for the Assay of Cholinesterase Inhibitors
by Miroslav Pohanka
Sensors 2025, 25(9), 2674; https://doi.org/10.3390/s25092674 - 23 Apr 2025
Viewed by 851
Abstract
Cholinesterases, specifically acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play critical roles in neurotransmission and are key targets for inhibitors with therapeutic and toxicological significance. This review focuses on the development and application of fluorometric and colorimetric biosensors for the detection of cholinesterase inhibitors. These [...] Read more.
Cholinesterases, specifically acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play critical roles in neurotransmission and are key targets for inhibitors with therapeutic and toxicological significance. This review focuses on the development and application of fluorometric and colorimetric biosensors for the detection of cholinesterase inhibitors. These biosensors take advantage of the unique properties of AChE and BChE to provide sensitive and selective detection methods essential for environmental monitoring, food safety, and clinical diagnostics. Recent advances in assay techniques, including the use of gold nanoparticles, pseudoperoxidase nanomaterials, and innovative enzyme–substrate interactions, are highlighted. This review also discusses challenges and future directions for optimizing these biosensors for practical applications, emphasizing their potential to enhance public health and safety. Full article
Show Figures

Figure 1

10 pages, 2102 KiB  
Article
Modified Biosensor for Cholinesterase Inhibitors with Guinea Green B as the Color Indicator
by Vladimír Pitschmann, Lukáš Matějovský, Martin Lobotka, Jan Dědič, Martin Urban and Michal Dymák
Biosensors 2018, 8(3), 81; https://doi.org/10.3390/bios8030081 - 4 Sep 2018
Cited by 15 | Viewed by 6169
Abstract
Colorimetric biosensors of cholinesterase inhibitors are ideal for fast, reliable, and very simple detection of agents in air, in water, and on surfaces. This paper describes an innovation of the Czech Detehit biosensor, which is based on a biochemical enzymatic reaction visualized by [...] Read more.
Colorimetric biosensors of cholinesterase inhibitors are ideal for fast, reliable, and very simple detection of agents in air, in water, and on surfaces. This paper describes an innovation of the Czech Detehit biosensor, which is based on a biochemical enzymatic reaction visualized by using Ellman’s reagent as a chromogenic indicator. The modification basically consists of a much more distinct color response of the biosensor, attained through optimization of the reaction system by using Guinea Green B as the indicator. The performance of the modified biosensor was verified on the chemical warfare agents (sarin, soman, cyclosarin, and VX) in water. The detection limits ascertained visually (with the naked eye) were about 0.001 µg/mL in water (exposure time 60 s, inhibition efficiency 25%). Full article
(This article belongs to the Special Issue Biosensors for Environmental Applications)
Show Figures

Figure 1

10 pages, 2162 KiB  
Article
New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors
by Lukáš Matějovský and Vladimír Pitschmann
Biosensors 2018, 8(2), 51; https://doi.org/10.3390/bios8020051 - 30 May 2018
Cited by 26 | Viewed by 6453
Abstract
Cholinesterase inhibitors are widely used as pesticides in agriculture, but also form a group of organophosphates known as nerve chemical warfare agents. This calls for close attention regarding their detection, including the use of various biosensors. One such biosensor made in the Czech [...] Read more.
Cholinesterase inhibitors are widely used as pesticides in agriculture, but also form a group of organophosphates known as nerve chemical warfare agents. This calls for close attention regarding their detection, including the use of various biosensors. One such biosensor made in the Czech Republic is the Detehit, which is based on a cholinesterase reaction that is assessed using a colour indicator—the Ellman’s reagent—which is anchored on cellulose filter paper together with the substrate. With the use of this biosensor, detection is simple, quick, and sensitive. However, its disadvantage is that a less pronounced yellow discoloration occurs, especially under difficult light conditions. As a possible solution, a new indicator/substrate carrier has been designed. It is made of glass nanofibres, so the physical characteristics of the carrier positively influence reaction conditions, and as a result improve the colour response of the biosensor. The authors present and discuss some of the results of the study of this carrier under various experimental conditions. These findings have been used for the development of a modified Detehit biosensor. Full article
(This article belongs to the Special Issue Micro and Nanoscale Biosensors)
Show Figures

Figure 1

Back to TopTop