New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Preparation of the Biosensor
2.3. Test of Functionality (Optimization of Experimental Conditions)
3. Results and Discussion
3.1. The Characteristics of the Carrier and Its Impact on the Intensity of the Achieved Colour
3.2. The Influence of the Carrier on the Effectiveness of the Inhibition of Enzyme
3.3. The Effect of the Enzyme Being Used
3.4. Stability
3.5. The Limit of Detection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 2005, 19, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.A.; Lukey, B.J.; Salem, H. Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Miao, Y.Q.; He, N.Y.; Zhu, J.J. History and new developments of assays for cholinesterase activity and inhibition. Chem. Rev. 2010, 110, 5216–5234. [Google Scholar] [CrossRef] [PubMed]
- Mesilaakso, M. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Halámek, E.; Kobliha, Z.; Pitschmann, V. Analysis of Chemical Warfare Agents; University of Defence: Brno, Czech Republic, 2009. [Google Scholar]
- Xu, Z.; Yao, S.; Wei, Y.; Zhou, J.; Zhang, L.; Wang, C.; Guo, Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wu, J. Amperometric determination of organophosphorus pesticide by silver electrode using an acetylcholinesterase inhibition method. Anal. Methods 2014, 6, 924–929. [Google Scholar] [CrossRef]
- Ringer, J.M. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas. Eur. J. Mass Spectrom. 2013, 19, 175–185. [Google Scholar] [CrossRef]
- Rosa La, C.; Pariente, F.; Hernández, L.; Lorenzo, E. Determination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate. Anal. Chim. Acta 1994, 295, 273–282. [Google Scholar] [CrossRef]
- Abad, J.M.; Pariente, F.; Hernández, L.; Abruña, H.D.; Lorenzo, E. Detection of organophosphorous and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 1998, 70, 2848–2855. [Google Scholar] [CrossRef]
- Kangas, M.J.; Burks, R.M.; Atwater, J.; Lukowicz, R.M.; Williams, P.; Holmes, A.E. Colorimetric sensor arrays for detection and identification of chemical weapons and explosives. Crit. Rev. Anal. Chem. 2017, 47, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Songa, E.A.; Okonkwo, J.O. Recent approaches to improving selectivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016, 155, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.F.M.; Neto, S.Y.; Luz, R.C.S.; Damos, F.S.; Yamanaka, H. Ultrasensitive determination of malathion using acetylcholinesterase immobilized on chitosan-functionalized magnetic iron nanoparticles. Biosensors 2018, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Marrazza, G. Piezoelectric biosensors for organophosphate and carbamate pesticides: A review. Biosensors 2014, 4, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, D.K.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Pohanka, M.; Vlček, V.; Žďárová-Karasová, J.; Kuča, K.; Cabal, J.; Fusek, J. Acetylcholinesterase based colorimetric dipsticks for military performance: Principles and construction. Adv. Mil. Technol. 2012, 7, 83–91. [Google Scholar]
- Tušarová, I.; Halámek, E.; Orel, J. Detekční Trubička Inhibitorů Cholinesteráz ve Vzduchu a Vodě. C.Z. Patent 285 242, 19 April 1999. [Google Scholar]
- Li, Y.; Hou, C.; Lei, J.; Deng, B.; Huang, J.; Yang, M. Detection of organophosphorus pesticides with colorimetry and computer image analysis. Anal. Sci. 2016, 32, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Bissbort, S.H.; Vermaak, W.J.H.; Elias, J.; Bester, M.J.; Dhatt, G.S.; Pum, J.-K.W. Novel test and its automation for determination of erythrocyte acetylcholinesterase and its application to organophosphate exposure. Clin. Chem. Acta 2001, 303, 139–145. [Google Scholar] [CrossRef]
- Pitschmann, V.; Matějovský, L.; Vetchý, D.; Kobliha, Z. Enzymatic determination of anticholinesterases using a composite carriers. Anal. Lett. 2016, 49, 2418–2426. [Google Scholar] [CrossRef]
- Pitschmann, V.; Matějovský, L.; Dymák, M.; Dropa, T.; Urban, M.; Vošahlíková, I. Cholinesterase inhibitor biosensors. Ecol. Saf. 2017, 11, 18–23. [Google Scholar]
- Hoskovcová, M.; Kobliha, Z. Modified cholinesterase technology in the construction of biosensors for organophosphorus nerve agents and pesticides detection. In Environmental Bosensors; InTech: Rijeka, Croatia, 2011; pp. 65–94. ISBN 978-953-307-486-3. [Google Scholar]
- Akbarian, F.; Lin, A.; Dunn, B.S.; Valentine, J.S.; Zink, J.I. Spectroscopic determination cholinesterase activity and inhibition in sol-gel media. J. Sol-Gel Sci. Technol. 1997, 8, 1067–1070. [Google Scholar] [CrossRef]
- Barendsz, A.W. A detection tube for cholinesterase inhibing compounds. Int. J. Environ. Anal. Chem. 1979, 6, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M.; Holas, O. Evaluation of 2,6-dichlorophenolindophenol acetate as a substrate for acetylcholinesterase activity assay. J. Enzym. Inhib. Med. Chem. 2015, 30, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, X.; Cai, Q.; Shen, T.; Zhu, S. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food. Food Control 2013, 30, 15–23. [Google Scholar] [CrossRef]
- Wang, J.L.; Xia, Q.; Zhang, A.P.; Hu, X.Y.; Lin, C.M. Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α-naphtyl acetate esterase extracted from wheat flour. J. Zhejiang Univ. Sci. B Biomed. Biotechnol. 2012, 13, 267–273. [Google Scholar]
- Tušarová, I.; Halámek, E. Biosenzor pro Detekci a Rozlišení Inhibitorů Cholinesteráz. C.Z. Patent 288 576, 22 May 2001. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matějovský, L.; Pitschmann, V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors 2018, 8, 51. https://doi.org/10.3390/bios8020051
Matějovský L, Pitschmann V. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors. 2018; 8(2):51. https://doi.org/10.3390/bios8020051
Chicago/Turabian StyleMatějovský, Lukáš, and Vladimír Pitschmann. 2018. "New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors" Biosensors 8, no. 2: 51. https://doi.org/10.3390/bios8020051
APA StyleMatějovský, L., & Pitschmann, V. (2018). New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors. Biosensors, 8(2), 51. https://doi.org/10.3390/bios8020051