Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = biomedical samples and beverages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3203 KiB  
Article
Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages
by Arjun Muthu, Duyen H. H. Nguyen, Aya Ferroudj, József Prokisch, Hassan El-Ramady, Chaima Neji and Áron Béni
Nanomaterials 2025, 15(15), 1161; https://doi.org/10.3390/nano15151161 - 28 Jul 2025
Viewed by 199
Abstract
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to [...] Read more.
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to its lower toxicity and higher bioavailability compared to inorganic selenium species. However, the detection of Se0 in real samples remains challenging as current analytical methods are time-consuming, labour-intensive, and often unsuitable for rapid analysis. In this study, we developed a method for rapidly measuring Se0 using carbon nanodots (CNDs) produced from the Maillard reaction between glucose and glycine. The fabricated CNDs were water-dispersible and strongly fluorescent, with an average particle size of 3.90 ± 1.36 nm. Comprehensive characterisation by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and Raman spectroscopy confirmed their structural and optical properties. The CNDs were employed as fluorescent probes for the selective detection of Se0. The sensor showed a wide linear detection range (0–12.665 mmol L−1), with a low detection limit (LOD) of 0.381 mmol L−1 and a quantification limit (LOQ) of 0.465 mmol L−1. Validation with spiked real samples—including ultra-pure water, tap water, and soft drinks—yielded high recoveries (98.6–108.1%) and low relative standard deviations (<3.4%). These results highlight the potential of CNDs as a simple, reliable, and environmentally friendly sensing platform for trace-level Se0 detection in complex food and beverage matrices. Full article
Show Figures

Graphical abstract

18 pages, 4327 KiB  
Article
Microbial Synthesis of Lactic Acid from Cotton Stalk for Polylactic Acid Production
by Meenakshi Paswan, Sudipto Adhikary, Heba Hassan Salama, Alexandru Vasile Rusu, Antonio Zuorro, Bharatkumar Z. Dholakiya, Monica Trif and Sourish Bhattacharya
Microorganisms 2023, 11(8), 1931; https://doi.org/10.3390/microorganisms11081931 - 28 Jul 2023
Cited by 10 | Viewed by 3165
Abstract
Cotton stalk, a waste product in agriculture, serves as a beneficial, low-cost material as a medium for microbial synthesis of lactic acid as desired for polylactic acid synthesis. Cotton stalk was used as a substrate for microbial lactic acid synthesis, and a novel [...] Read more.
Cotton stalk, a waste product in agriculture, serves as a beneficial, low-cost material as a medium for microbial synthesis of lactic acid as desired for polylactic acid synthesis. Cotton stalk was used as a substrate for microbial lactic acid synthesis, and a novel strain of Lactococcus cremoris was reported to synthesize 51.4 g/L lactic acid using cellulose recovered from the cotton stalk. In total, 18 Lactobacillus isolates were isolated from kitchen waste, soil, sugarcane waste, and raw milk samples screened for maximum lactic acid production. It was found that one of the Lactococcus cremoris isolates was found to synthesize maximum lactic acid at a concentration of 51.4 g/L lactic acid in the hydrolysate prepared from cotton stalk. The upstream process parameters included 10% inoculum size, hydrolysate containing reducing sugars 74.23 g/L, temperature 37 °C, agitation 220 rpm, production age 24 h. Only the racemic (50:50) mixture of D-LA and L-LA (i.e., D/L-LA) is produced during the chemical synthesis of lactic acid, which is undesirable for the food, beverage, pharmaceutical, and biomedical industries because only the L-form is digestible and is not suitable for biopolymer, i.e., PLA-based industry where high optically purified lactic acid is required. Furthermore, polylactic acid was synthesized through direct polycondensation methods using various catalysts such as chitosan, YSZ, and Sb2O3. PLA is biocompatible and biodegradable in nature (its blends and biocomposites), supporting a low-carbon and circular bioeconomy. Full article
Show Figures

Figure 1

28 pages, 1625 KiB  
Review
Overall Review on Recent Applications of Raman Spectroscopy Technique in Dentistry
by Iulian Otel
Quantum Beam Sci. 2023, 7(1), 5; https://doi.org/10.3390/qubs7010005 - 1 Feb 2023
Cited by 11 | Viewed by 5331
Abstract
The present paper reviews the applications of Raman spectroscopy in dentistry in the past two decades. This technique is considered a highly promising optical modality, widely used for the chemical identification and characterization of molecular structures, providing detailed information on the structural arrangement, [...] Read more.
The present paper reviews the applications of Raman spectroscopy in dentistry in the past two decades. This technique is considered a highly promising optical modality, widely used for the chemical identification and characterization of molecular structures, providing detailed information on the structural arrangement, crystal orientations, phase, and polymorphism, molecular interactions and effects of bonding, chemical surrounding environment, and stress on samples. Raman spectroscopy has been appropriate to investigate both organic and inorganic components of dental tissues since it provides accurate and precise spectral information on present minerals through the observation of the characteristic energies of their vibrational modes. This method is becoming progressively important in biomedical research, especially for non-invasiveness, non-destructiveness, high biochemical specificity, low water sensitivity, simplicity in analyzing spectral parameters, near-infrared region capability, and in vivo remote potential by means of fiber-optics. This paper will address the application of Raman spectroscopy in different fields of dentistry, found to be the most relevant and prevalent: early recognition of carious lesions; bleaching products performance; demineralizing effect from low-pH foods and acidic beverages; and efficiency of remineralization agents. Additionally, this review includes information on fiber-optic remote probe measurements. All described studies concern caries detection, enamel characterization, and assessment indicating how and to what extent Raman spectroscopy can be applied as a complementary diagnostic method. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2022)
Show Figures

Figure 1

14 pages, 2163 KiB  
Article
Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers
by Natalija German, Anton Popov, Arunas Ramanavicius and Almira Ramanaviciene
Biosensors 2022, 12(8), 641; https://doi.org/10.3390/bios12080641 - 14 Aug 2022
Cited by 32 | Viewed by 3726
Abstract
In this study, graphite rod (GR) electrodes were electrochemically modified by dendritic gold nanostructures (DGNs) followed by immobilization of glucose oxidase (GOx) in the presence of mediator phenazine methosulfate (PMS). Modified with polyaniline (PANI) or polypyrrole (Ppy), GOx/DGNs/GR electrodes were used in glucose [...] Read more.
In this study, graphite rod (GR) electrodes were electrochemically modified by dendritic gold nanostructures (DGNs) followed by immobilization of glucose oxidase (GOx) in the presence of mediator phenazine methosulfate (PMS). Modified with polyaniline (PANI) or polypyrrole (Ppy), GOx/DGNs/GR electrodes were used in glucose biosensor design. Different electrochemical methods were applied for the registration of glucose concentration, and constant potential amperometry (CPA) was chosen as the best one. PANI and Ppy layers synthesized enzymatically on the GOx/DGNs/GR electrodes extended the linear glucose determination range, the width of which depended on the duration of PANI- and Ppy-layers formation. Enzymatically formed polypyrrole was determined as the most suitable polymer for the modification and formation of the glucose biosensor instead of polyaniline, because it was 1.35 times more sensitive and had a 2.57 times lower limit of detection (LOD). The developed glucose biosensor based on the Ppy/GOx/DGNs/GR electrode was characterized by appropriate sensitivity (59.4 μA mM−1 cm−2), low LOD (0.070 mmol L−1), wide linear glucose determination range (up to 19.9 mmol L−1), good repeatability (8.01%), and appropriate storage stability (33 days). The performance of the developed glucose biosensor was tested in biological samples and beverages. Full article
Show Figures

Graphical abstract

26 pages, 8045 KiB  
Article
An Intra-Oral Optical Sensor for the Real-Time Identification and Assessment of Wine Intake
by Paul Faragó, Ramona Gălătuș, Sorin Hintea, Adina Bianca Boșca, Claudia Nicoleta Feurdean and Aranka Ilea
Sensors 2019, 19(21), 4719; https://doi.org/10.3390/s19214719 - 30 Oct 2019
Cited by 10 | Viewed by 4777
Abstract
Saliva has gained considerable attention as a diagnostics alternative to blood analyses. A wide spectrum of salivary compounds is correlated to blood concentrations of biomarkers, providing informative and discriminative data regarding the state of health. Intra-oral detection and assessment of food and beverage [...] Read more.
Saliva has gained considerable attention as a diagnostics alternative to blood analyses. A wide spectrum of salivary compounds is correlated to blood concentrations of biomarkers, providing informative and discriminative data regarding the state of health. Intra-oral detection and assessment of food and beverage intake can be correlated and provides valuable information to forecast the formation and modification of salivary biomarkers. In this context, the present work proposes a novel intra-oral optical fiber sensor, developed around an optical coupler topology, and exemplified on the detection and assessment of wine intake, which is accounted for example for the formation of Nε-carboxymethyllysine Advanced Glycation End-products. A laboratory proof of concept validates the proposed solution on four white and four red wine samples. The novel optical sensor geometry shows good spectral properties, accounting for selectivity with respect to grape-based soft drinks. This enables intra-oral detection and objective quality assessment of wine. Moreover, its implementation exploits the advantages of fiber-optics sensing and facilitates integration into a mouthguard, holding considerable potential for real-time biomedical applications to investigate Advanced Glycation End-products in the saliva and their connection with consumption of wine, for the evaluation of risk factors in diet-related diseases. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Applications)
Show Figures

Figure 1

19 pages, 816 KiB  
Article
Effect of Winemaking on the Composition of Red Wine as a Source of Polyphenols for Anti-Infective Biomaterials
by Arianna Di Lorenzo, Nora Bloise, Silvia Meneghini, Antoni Sureda, Gian Carlo Tenore, Livia Visai, Carla Renata Arciola and Maria Daglia
Materials 2016, 9(5), 316; https://doi.org/10.3390/ma9050316 - 27 Apr 2016
Cited by 21 | Viewed by 10000
Abstract
Biomaterials releasing bactericides have currently become tools for thwarting medical device-associated infections. The ideal anti-infective biomaterial must counteract infection while safeguarding eukaryotic cell integrity. Red wine is a widely consumed beverage to which many biological properties are ascribed, including protective effects against oral [...] Read more.
Biomaterials releasing bactericides have currently become tools for thwarting medical device-associated infections. The ideal anti-infective biomaterial must counteract infection while safeguarding eukaryotic cell integrity. Red wine is a widely consumed beverage to which many biological properties are ascribed, including protective effects against oral infections and related bone (osteoarthritis, osteomyelitis, periprosthetic joint infections) and cardiovascular diseases. In this study, fifteen red wine samples derived from grapes native to the Oltrepò Pavese region (Italy), obtained from the winemaking processes of “Bonarda dell’Oltrepò Pavese” red wine, were analyzed alongside three samples obtained from marc pressing. Total polyphenol and monomeric anthocyanin contents were determined and metabolite profiling was conducted by means of a chromatographic analysis. Antibacterial activity of wine samples was evaluated against Streptococcus mutans, responsible for dental caries, Streptococcus salivarius, and Streptococcus pyogenes, two oral bacterial pathogens. Results highlighted the winemaking stages in which samples exhibit the highest content of polyphenols and the greatest antibacterial activity. Considering the global need for new weapons against bacterial infections and alternatives to conventional antibiotics, as well as the favorable bioactivities of polyphenols, results point to red wine as a source of antibacterial substances for developing new anti-infective biomaterials and coatings for biomedical devices. Full article
(This article belongs to the Special Issue Anti-Infective Materials in Medicine and Technology)
Show Figures

Graphical abstract

Back to TopTop